تاريخ : چهارشنبه هفتم خرداد 1393 | 17:1 | نویسنده : علیرضا حسینی

        شدت انرژی برای ذوب یک کیلوگرم شیشه یا جریانات انرژی در هر ساعت را می توان محاسبه نمود.

 

-        کل انرژی مصرفی برای ذوب یک کیلوگرم شیشه = 7/4 مگاژول

  • انرژی حاصل از احتراق سوخت، 98% = 6/4 مگاژول
  • انرژی محسوس همراه سوخت، 2% = 1/0 مگاژول

-        انرژی مورد نیاز برای گرم کردن بچ و واکنش ها، 45% = 06/2 مگاژول

-        اتلاف انرژی از داگ هاوس و مشعل ها، 3% = 15/0 مگاژول

-        اتلاف انرژی در پورت ها و فضای بین کوره و ریجنراتور، 3/4% = 2/0 مگاژول

-        اتلاف انرژی در دیواره های ریجنراتور، 2% = 1/0 مگاژول

-        انرژی خروجی بهمراه گازهای احتراق، 24% = 1/1 مگاژول

 

همچنین در این کوره 47%  انرژی گازهای خروجی بازیابی می شود که مقدار آن 15/2 مگاژول برای هر کیلوگرم مذاب خواهد بود.


برچسب‌ها: موازنه انرژی در کوره های ذوب شیشه

تاريخ : چهارشنبه هفتم خرداد 1393 | 16:59 | نویسنده : علیرضا حسینی

اتلاف انرژی از دیواره های کوره

 

        اتلاف انرژی از دیواره های کوره به دو شکل صورت می گیرد که عبارتند از هدایت حرارتی از طریق نسوزهای کوره از داخل به بیرون آن و همچنین تشعشع انرژی از طریق دریچه ها و منافذ اطراف کوره.

 

        شکل زیر دو نوع دیواره کوره با عایقکاری های مختلف را نشان می دهد.

 

        در حالت الف ، کوره بخوبی عایق کاری شده و افت دما در دیواره کوره بسیار زیاد است بگونه ای که دمای سطح خارجی دیواره با دمای محیط اختلاف کمی دارد. در نتیجه انتقال انرژی از دیواره کوره به محیط اطراف بسیار کاهش می یابد. در چنین کوره هایی میزان اتلاف انرژی در حدود 2 تا 3 کیلووات در مترمربع است.

 

        در حالت ب،  کوره به خوبی عایقکاری نشده و افت دما در دیواره کوره کاهش محسوسی نیافته است. در این نوع کوره ها اتلاف انرژی تا محدوده 7 تا 10 کیلووات در مترمربع افزایش می یابد.

 

 

 

       
       

 

 

                                           TO                محیط باز                                                                داخل کوره

    CO                                                                                                                                    TO

 
   

 

 

    TK                                          Om                                                                                                                       Om

                                      

 TO                                                                     

                                                                                            TO

 

 

        ب – کوره با عایقکاری نامناسب                                                    الف – کوره با عایقکاری مناسب

 

 

در کوره های مدرن از حداکثر عایقکاری در سقف و دیواره های کوره استفاده می شود و بیش از آن مجاز نمی باشد، زیرا عایق کاری بیشتر باعث افزایش بیش از حد دیواره های داخلی کوره گردیده و خوردگی نسوزهای کوره را شدیدا افزایش می دهد.

 

 

 

 

 

 

 

5 12  اتلاف انرژی از دریچه ها و منافذ کوره

 

 

        این نوع اتلاف انرژی بیشتر از درچه های دیده بانی، درزها و منافذ کوره صورت گیرد. با توجه به دمای بالای سطوح، اتلاف انرژی عمدتا به صورت تشعشع صورت می گیرد. میزان تشعشع انرژی بر اساس قانون استفان – بولتزمن به ضریب گسیل یا ضریب تشعشع سطح و دمای آن بستگی دارد.

 

 

T4 .= تشعشع Q

ضریب گسیل =

 

ثابت استفان- بولتزمن

 

(

W

 

)

 

8- 10 ×67/5 =

m2.k4

دمای سطح بر حسب درجه کلوین = T

 

        بعنوان مثال میزان تشعشع از سطح در دمای 1000 درجه کلوین با ضریب گسیل 6/0 حدود 34 کیلو وات بر متر مربع خواهد بود.

 

 

6 12 اتلاف انرژی توسط خنک کاری

 

بخش های مختلف کوره توسط هوا یا آب خنک کاری می شود که عبارتند از:

-        مشعل های کوره

-        فیدرهای بچ

-        الکترودها

-        همزن های مذاب در گلوگاه یا کانال

-        ناحیه ذوب ( خط ذوب در کوره ) ( حدود  C ۫  120 مناسب است )

-        خنک کاری سقف یا پورت ها و پاتاق های سقف کوره

-        خنک کاری ناحیه گلوگاه

-        خنک کاری ناحیه کانال تغذیه مذاب به منظور تنظیم دمای آن

 

 

 

 

       میزان انرژی که توسط خنک کاری تلف می شود بین 2 تا 5 درصد کل انرژی مصرفی در کوره است. بهر حال به منظور کاهش اتلاف انرژی توسط خنک کاری لازم است حداقل میزان خنک کاری در نقاط مورد نیاز مورد استفاده قرار گرفته و از سرد کردن بیش از حد تجهیزات و نسوزهای کوره خودداری به عمل آید.

 

        مجموع اتلاف انرژی از ساختار کوره شامل تلفات انرژی در ناحیه سقف، دیوارها و کف کوره، تشعشع حرارتی از      دریچه ها و درزها و منافذ کوره و همچنین اتلاف انرژی ناشی از خنک کاری اجزاء کوره رقمی بین 20 تا 40 درصدی انرژی مصرفی در کوره را تشکیل می دهد.

 

7 12  اتلاف انرژی توسط گازهای خروجی از کوره

 

        با توجه به دماهای بالای کوره های ذوب شیشه، گازهای خروجی از کوره ( شامل گازهای حاصل از احتراق سوخت و همچنین گازهای ناشی از تجزیه مواد اولیه) بخش قابل ملاحظه ای از انرژی کوره را با خود حمل می کنند. در کوره های مدرن قسمتی از انرژی گازهای خروجی از کوره برای پیش گرم کردن هوای احتراق مورد استفاده قرار می گیرد.

 

        بعنوان مثال اگر در یک کوره فرضی در هر ساعت 50000 متر مکعب گاز با دمای 1450 درجه سانتیگراد از کوره خارج شود و ترکیب گازهای خروجی به صورت زیر باشد:

 

72% = N2

2% = O2

10% = CO2

16% = (بخار) H2O

 

محاسبات نشان می دهد که در مقایسه با دمای 25 درجه سانتیگراد، این حجم گاز مقدار GJ 114 ( 114 میلیارد ژول) انرژی بهمراه خود از کوره خارج می نماید.

 

بخش زیادی از این انرژی توسط سیستم های بازیابی حرارتی نظیر ریجنراتور یا ریکوپراتور قابل استحصال است که در قسمت های بعدی مورد بحث قرار خواهد گرفت.

در جدول زیر محدوده دماهای هوای احتراق قبل و پس از پیش گرم شدن مشخص گردیده است:

 

 

ریجنراتور

دمای ورودی (C۫  )             دمای خروجی (C۫  )

ریکوپراتور

دمای ورودی (C۫  )               دمای خروجی (C۫  )

هوای احتراق

50 - 25

1350 - 1100

50 - 25

750 – 450

گازهای خروجی

1450 - 1300

600 - 500

1350 - 1100

1000 - 600

 

 

 

8 12  پیش گرم کردن هوای احتراق

 

        تقریبا تمامی کوره های پیوسته از نوعی سیستم بازیابی حرارتی برای انتقال انرژی گازهای خروجی به هوای سرد ورودی به کوره استفاده می کنند.

 

       در شرایط بکار گیری ریکوپراتور، بین 25 تا حداکثر 40 درصد انرژی گازهای خروجی قابل استحصال است و در صورت استفاده از ریجنراتور این رقم به 55 تا 70 درصد افزایش می یابد.

 

        دماهای قابل دسترسی برای هوای احتراق نیز قبلا ارائه شده است. پیش گرم کردن هوای احتراق دارای مزیت هایی است که مهمترین آنها عبارت است از :

 

-         کاهش قابل ملاحظه در مصرف انرژی

-         افزایش دمای شعله و در نتیجه انتقال حرارت بیشتر از شعله مشعل ها به بچ و مذاب موجود در کوره

        افزایش دمای هوای احتراق که باعث افزایش دمای شعله می شود در عین حال باعث ازدیاد میزان تشکیل گازهای NOx  میگردد، که پدیده ای نامطلوب تلقی می شود.


برچسب‌ها: اتلاف انرژی در کوره های شیشه

تاريخ : چهارشنبه هفتم خرداد 1393 | 16:57 | نویسنده : علیرضا حسینی

شدت انرژی در یک کوره ذوب شیشه به عوامل زیر بستگی دارد:

 

-        فرمولاسیون بچ، بویژه درصد شیشه خرده

-        میزان رطوبت بچ و شیشه خورده

-        میزان فشردگی ذرات بچ ( بچ فله یا بچ حبه ای شکل)

-        دمای بچ و شیشه خورده هنگام ورود به کوره

-        عایق کاری و درزبندی قسمت های مختلف کوره و ریجنراتورها

-        حداکثر دمای کوره با توجه به کیفیت مورد انتظار در محصول

-        زمان اقامت بچ در کوره ( کشش کوره )

-        طراحی کوره

-        نسبت هوای احتراق به سوخت و مناسب بودن آن

-        تنظیم مشعل های کوره

-        بازده پیش گرم کردن هوای احتراق توسط ریجنراتور یا ریکوپراتور

-        پیوسته یا غیر پیوسته بودن فرایند ذوب

به همین ترتیب انرژی مورد استفاده در کوره های ذوب شیشه را می توان به 4 گروه تقسیم بندی نمود:

 

1       . انرژی انتقال یافته برای گرم نگهداشتن مذاب و ساختار کوره

2       . انرژی مصرفی برای ذوب شیشه

3       . انرژی همراه گازهای خروجی از کوره

4       . انرژی تلف شده از سقف، کف، دیواره های کوره و منافذ آن


برچسب‌ها: موازنه انرژی در کوره های ذوب شیشه

تاريخ : چهارشنبه هفتم خرداد 1393 | 16:56 | نویسنده : علیرضا حسینی

        فرآیند تولید شیشه از مراحل مختلفی تشکیل می شود. ابتدا با آماده سازی مواد اولیه برای ذوب مواجه هستیم. تجهیزات این قسمت عمدتا مکانیکی است و در آنها از انرژی الکتریکی استفاده می شود. در مرحله ذوب تجهیزات مکانیکی به طور محدود مورد استفاده قرار می گیرند، بنابراین عوامل تعیین کننده فرایند عمدتا ترمودینامیکی بوده و در این قسمت انواع سوخت های فسیلی مورد استفاده قرار می گیرند.

 

 

        در مرحله شکل دهی هر دو عامل مکانیکی و ترمودینامیکی موثر می باشند و در این بخش انرژی الکتریکی و     سوخت های فسیلی به طور مساوی مصرف می شوند.

 

 

        همانگونه که اشاره شد حدود دو سوم انرژی مصرفی در فرایند تولید یک کیلوگرم محصول شیشه ای، در مرحله ذوب و آماده سازی مذاب مورد استفاده قرار می گیرد، در نتیجه در واحدهای شیشه سازی مدیریت انرژی در بخش ذوب و کوره ها از اهمیت زیادی برخوردار است.

 



تاريخ : چهارشنبه هفتم خرداد 1393 | 16:55 | نویسنده : علیرضا حسینی

 شاخص های مصرف انرژی در شیشه

 

        ذوب شیشه فرآیندی انرژی بر است. به منظور ارزیابی میزان مصرف انرژی در یک کشور و یا در یک واحد صنعتی و مقایسه آن با استانداردهای متعارف، بایستی شاخص مناسبی تعیین شود. شاخص مناسب برای مقایسه مصارف انرژی در مقاطع مختلف زمانی، شدت مصرف آن است.

 

       عبارت شدت انرژی به میزان مصرف انرژی به ازاء واحد تولید اطلاق می گردد. در واحدهای شیشه سازی، انرژی مصرف شده برای تولید یک کیلو گرم شیشه را می توان ملاک قرار داد. یعنی انرژی مصرف شده ( اعم از گاز طبیعی، مازوت، گازوئیل و برق) برای تولید یک کیلوگرم شیشه به عنوان شدت انرژی در هر واحد تولیدی تلقی می شود. با محاسبه شدت انرژی در هر واحد شیشه سازی می توان به چگونگی بهروری انرژی در آن واحد پی برد.

 

        در کشور های پیشرفته صنعتی در چند دهه اخیر تلاش های بسیاری برای کاهش میزان مصرف انرژی در صنایع شیشه صورت گرفته و نتایج ارزنده ای حاصل گردیده است. در این کشورها در حال حاضر شدت انرژی برای تولید یک کیلوگرم شیشه بین 5 تا 10 مگاژول می باشد که عمدتا به صورت گاز طبیعی، سوخت های فسیلی و برق مورد استفاده قرار می گیرد.

 

        شدت انرژی برای تولید شیشه به عوامل زیادی بستگی دارد که از جمله مهمترین آنها می توان به سیستم بازیابی حرارتی و شرایط عملیاتی کوره، ظرفیت کوره، فرمولاسیون شیشه، میزان اتلاف انرژی از کوره و برخی عوامل دیگر اشاره نمود.

 

        در کشور ما گزارشات مربوط به محاسبات و شدت انرژی و تهیه اطلاعات آماری دقیق از آن در واحدهای صنعتی چندان معمول نبوده و به اندازه لازم مورد توجه قرار نگرفته است.

 

        معهذا بررسی های داخلی و مقدماتی که در برخی واحدهای شیشه سازی بویژه واحدهای با تکنولوژی قدیمی صورت گرفته، نشان می دهد که میزان مصرف انرژی در چنین واحدهایی گاه تا 2 الی 5/2 برابر شدت انرژی برای تولید همان محصول در کشورهای پیشرفته صنعتی است.

 

       علاوه بر دلایل تکنولوژیک، یکی دیگر از دلایل بسیار مهم بالا بودن میزان مصرف انرژی در واحدهای شیشه سازی قدیمی، بازده پائین تولید محصول و همچنین پایین بودن بازده ذوب کوره ها در بسیاری از موارد است. در این زمینه درقسمت های بعدی، توضیحات بیشتری ارائه خواهد گردید.

 

        

 

 

 

 

 

       جدول زیر میزان مصرف انرژی برای ذوب یک کیلوگرم انواع شیشه را در کشورهای اروپای غربی در سال 1997 نشان می دهد. میزان مصرف انرژی برای ذوب یک کیلوگرم شیشه معمولا 55 تا 60 درصد از کل انرژی مصرفی برای تولید یک کیلوگرم از همان محصول را شامل می شود. این رقم در صنایع شیشه با تکنولوژی قدیمی تا حدودی بیشتر است.

 

 

 

نوع شیشه

شدت انرژی بر حسب مگاژول برای ذوب یک کیلوگرم شیشه

شیشه بسته بندی (بطری)

5 – 5/3

شیشه فلوت

7 – 6

شیشه تلویزیون

8

شیشه نوع E ( الیاف )

8 – 7

صنایع دستی – ظروف سرمیز

20 - 9



تاريخ : سه شنبه ششم خرداد 1393 | 20:47 | نویسنده : علیرضا حسینی

10   پایرومترها  وسیله دیگر اندازه گیری درجه حرارت پیرومتر است. پیرومتر تشعشع حرارتی را در همان ناحیه مشخص که مورد نظر است بدست می آورد در صورتیکه ترموکوپل متوسط یک ناحیه را می دهد.

 

پیرومترها خود به دو دسته تقسیم می شوند:

 

( الف ) Optical pyrometer : بطور عمده درخشندگی Brightness جسم داغ را اندازه گیری می کند و سپس با فیلامان یک لامپ ملتهب مقایسه می کند و از این طریق درجه حرارت را بدست می آورد.

 

 

 

 

 

( ب )  pyrometer   Radiation: ( رادیومات ) : بر اساس اندازه گیری انرژی تشعشع حرارتی که از واحد سطح     جسم داغ خارج می شود عمل می کند. بنابراین انرژی حرارتی در واحد سطح را اندازه گیری می کند. هر دو سیستم دقت   مشابه دارند و اختلاف اساسی با یکدیگر ندارند. برای خرید این دستگاهها دامنه درجه حرارت و دقت مورد نیاز را باید در      نظر گرفت. دقت های خیلی بالا موجب افزایش شدید قیمت می گردد. بنابراین باید پیرومتری با دقت مناسب انتخاب نمود. دامنه درجه حرارت مناسب برای پیرومتر 1600- 1200 درجه سانتیگراد است

 

        در هنگام کار با پیرومتر جهت جلوگیری از خطا رعایت موارد زیر ضروری است :

 

1 – محل اندازه گیری دما: محلی را باید انتخاب کرد که کمترین تشعشع اضافی را داشته باشد.

2 – زاویه دید.

3 – فاصله

 



تاريخ : سه شنبه ششم خرداد 1393 | 20:43 | نویسنده : علیرضا حسینی

10  ترموکوپل ها  نسبت به سایر ابزار اندازه گیری دما بیشترین مصرف را در صنعت شیشه دارند. ترموکوپل ابداعی است در سال 1821 توسط Seebeck وارد صنعت گردید. اساس کار ترموکوپل ها بر این است که اگر دو فلز A و B را در        دو نقطه به هم جوش دهیم و بین این دو نقطه اختلاف درجه حرارت باشد، جریانی ایجاد خواهد شد که دارای اختلاف پتانسیلی است که از رابطه زیر بدست می آید : 

 

 mv = emf = a + bt + ct 2

aو b و c مقادیر ثابت و تابع جنس فلز می باشند. و

 

t = t2 – t1

- o emf o+

                                                                                     A                                    

                                               t1                                                    t2

 

                                                                                      B

 

        با انتخاب مناسب دو فلز، ترموکوپلهایی با حساسیت مختلف بدست می آید. حساسیت ترموکوپل با میزان میلی ولتی که نشان می دهد تعیین می گردد. هر چه میلی ولت زیادتر باشد، حساسیت ترموکوپل بالاتر است.

 

سه خانواده از ترموکوپل ها در زیر آورده شده است:

 

CC       Copper – Constantrin ( Cu 60% - Ni 40% )      600-760 ·C

C.A      Chrom – Alomel  ( Al;Ni )          460 – 1315 ·C   

P.R       Platin – platin; Rhodium  (10 – 30% )      1000 – 1800 ·C

 

 

 

        هر کدام از سیم های فلزی ترموکوپل بتدریج در هنگام کار اکسیده می شوند و رفته رفته دقت آنها کاهش می یابد.

        بدین جهت اغلب دارای غلاف چینی فوق العاده فشرده و غیر قابل نفوذ برای گاز ( Gas – Tight ) بوده و یا      غلاف های فلزی دارند.

        فلز پلاتین خود در بسیاری از واکنش های شیمیایی نقش کاتالیزور دارد. چنانچه پلاتین در مذاب قرار گیرد با سیلیس تولید عنصر سیلیسیم می کند که در سطح ترموکوپل قرار گرفته و این موجب خطا در اندازه گیری ترموکوپل میشود.

 

        از طرف دیگر پلاتین در 1400درجه سانتیگراد تمایل به تک بلور شدن دارد.

 

        کروزه های پلاتین آزمایشگاهی در درجه حرارت های بالا بعلت این پدیده ترک دار یا سوراخ میشوند.

 

        تغییرات فوق موجب کاهش عمر و دقت ترموکوپل می گردد. محل قرار گرفتن ترموکوپل ها نیز از اهمیت خاصی برخوردار است. باید دید که از ترموکوپل چه توقعی داریم. آیا حساسیت ( Sensitivity ) مد نظر است یا دقت منظور نظر اصلی است.

        دقت عدد مطلق را می دهد یعنی حدود درجه حرارت را در صورتیکه در جایی دیگر تغییرات درجه حرارت بطور لحظه ای مورد نیاز است.

        در قسمت ذوب ( Melting ) دقت مورد نیاز است در صورتیکه در فیدر حساسیت مد نظر است.

 

        محل قرار گرفتن ترموکوپل نیز اهمیت دارد و باید همیشه در یک جای ثابت با فواصل مشخص و ثابت باشد. در قسمتهایی که تشعشع زیاد است، ترموکوپل ایجاد خطا می کند.

 

       حرارت بصورت تشعشع در کوره های ذوب از دو قسمت سطح مذاب و دیواره ها جذب می گردد و طبیعی است که میزان تشعشع حرارتی این دو قسمت با هم یکسان نیست حتی دیواره ها تشعشع حرارتی یکسانی نسبت به هم ندارند. البته باید توجه داشت که بیشترین تشعشع از سطح مذاب بدست می آید. به همین دلیل بسیاری معتقد هستند که ترموکوپل نباید از سطح دیواره بیرون بیاید و حتی بصورت حفره ای در داخل سقف قرار گیرد.

 



تاريخ : سه شنبه ششم خرداد 1393 | 20:39 | نویسنده : علیرضا حسینی

فشار کوره :

 

      فشار کوره معمولا از جمله پارامترهایی است که به صورت اتوماتیک کنترل می شود و در یکی از دو محل زیر قابل اندازه گیری است:

       الف  )  درست در بالای سطح مذاب در بلوک های دیوار جانبی مخزن تصفیه (Working end ) که مقادیر نسبتا پایداری را بدست می دهد، هر چند که پائین تر از مقادیر واقعی اند.

      ب  )  در دیوار انتهای کوره در نزدیکی سقف. از آنجا که تجمع گازهای کوره متمایل به جمع شدن در اطراف سقف کوره است، ممکن است ارقام اندازه گیری شده در این روش کمی بالاتر از فشار واقعی کوره و تحت تاثیر وضعیت شعله مشعل ها باشد.

 

        

 

 

        فشار مثبت از طریق خروج گازهای داخل کوره از طریق دریچه های بازرسی قابل رویت است. فشار مثبت زیاد موجب یکنواختی بیشتر توزیع گرما در فضای احتراق می شود که ناشی از حرکت گازهای داغ به این سو و آن سوی فضای کوره     به هنگام خروج از آن است.

 

         در دماهای متداول کوره، این امر تاثیر بسیار بدی بر روی نسوزهای کوره برجای میگذارد، زیرا باعث می شود گازها    به داخل درزهایی که نشت بندی آنها کامل نیست نفوذ نماید.

 

         در کوره هایی که دارای دودکش با مکش طبیعی هستند، سیستم کنترل فشار دمپر اصلی کوره را با کمک یک      موتور الکتریکی آنقدر جابجا می کند، با فشار مورد نظر تنظیم شود. در کوره های با مکش اجباری، عمل کنترل فشار کوره معمولا با تغییر سرعت فن یا دبی جریان هوای اگزوز صورت می گیرد



تاريخ : سه شنبه ششم خرداد 1393 | 20:37 | نویسنده : علیرضا حسینی

مشعل های مصرفی در کوره های ذوب شیشه :

 

        احتراق در کوره های شیشه می تواند بر حسب مورد به طرق مختلفی صورت گیرد. برای مثال از زیر پورت، از کناره پورت، از بالای پورت و یا سقف آن. با توجه به محل نصب مشعل ها نوع سنگ مشعل و همچنین طراحی مشعل ها بایستی   به نحو مطلوبی انجام شود.

 

        برخی متصدیان کوره، مشعل ها را چند سانتیمتر بیرون سوراخ مشعل و با زاویه خاص تنظیم می کنند تا مقداری     هوای سرد اولیه در اطراف سر مشعل وارد کنند. این مسئله باعث تنظیم بهتر و کوتاه تر شدن شعله شده ولی در عین حال همزمان موجب افزایش مصرف سوخت و افت دما نیز می شود.

 

 

 

 

 

 

        یکی از اشکالات کاربرد هوای اولیه، علاوه بر ایجاد سرما آن است که شکل شعله به وسیله مشعل و اندازه سوراخ   سنگ مشعل کنترل می شود و این به معنای تنظیم مداوم مشعل و شعله حاصل از آن است .

    طول یک شعله که پخش پراکنده دارد در وهله اول به نوع سوخت صرفی بستگی دارد. در مورد سوخت های گازی رابطه نیمه تجربی گانتر به شکل زیر ارائه شده است:

 

 
   

 

 

gj

 

 

L/d = 6 (R + 1 )                                                                                                                                                        

 
   

 

 

 

 که در آن

L = طول شعله، فوت

d = قطر شیپوری گاز، فوت

R = نسبت وزنی استوکیومتری هوا به سوخت ( برای متان معادل 25/17 )

cj = چگالی سوخت گازی بر حسب پوند بر فوت مکعب ( 04230/0 برای متان )

gj = چگالی میانگین گازهای احتراق، پوند بر فوت مکعب ( حدود 0128/0 پوند بر فوت مکعب در 3000 درجه رانکین)



تاريخ : جمعه دوم خرداد 1393 | 10:21 | نویسنده : علیرضا حسینی

       قدرت ذوب یک کوره چنانچه فرمولاسیون بچ، درجه حرارت هوای پیش گرم و حداکثر دمای کوره ثابت

 

باشد، تابع کشش کوره و نوع محصول نهایی است.  قدرت ذوب کوره معمولا بر حسب کیلوگرم بر متر مربع

 

 سطح ذوب  در ساعت  (   kg    ) بیان می شود و برای کوره های مختلف می تواند بین 40 تا 120 واحد

m2.h                              

متغیر باشد.                

               

     در مطالعات انجام شده در تغییر قدرت ذوب یک کوره تولید بطری با قدرت ذوب روزانه 180 تن، 20 درصد شیشه خرده، دمای هوای پیش گرم 1150 درجه سانتیگراد و حداکثر دمای 1500 درجه سانتیگراد نتایج زیر بدست آمده است:

عامل موثر در قدرت ذوب

قدرت ذوب کوره

9% تغییر دردرصد شیشه خرده

10%

3/0 درصد تغییر در Na2O (جایگزین سیلیس)

10%

45/0 درصد تغییر در (Mgo + Cao ) جایگزین سیلیس

10%

C۫20 تغییر در دمای حداکثر کوره

10%

  

     نتایج فوق گرچه برای کوره ای با شرایط بالا حاصل گردیده، لیکن می تواند به عنوان الگویی برای سایر       کوره های ذوب شیشه به صورت نسبی مورد استفاده قرار گیرد.



تاريخ : شنبه سی ام آذر 1392 | 14:21 | نویسنده : علیرضا حسینی

     در اکثر موارد لایه ای از کف سطح مذاب در کوره را می پوشاند. منشاء ایجاد کف خروج گازهای مختلف از مذاب است که از تجزیه مواد اولیه و واکنش شیمیایی بین آنها ناشی می شود. کف اولیه واژه ای است که به این نوع کف اتلاق می شود. در مرحله تصفیه و حباب زدایی نیز حجم زیادی گاز از مذاب خارج می شود که ایجاد کف ثانویه می نماید. بویژه هنگامی که در تصفیه مذاب از سولفات سدیم استفاده می شود، حباب های زیادی حاوی گاز SO2 و در برخی موارد O2 در سطح مذاب کف ایجاد می کنند. علت تشکیل کف آن است که حباب هایی که به سطح مذاب صعود می کنند، بلافاصله از بین نمی روند و مدتی را در سطح مذاب به صورت پایدار باقی می مانند.

     وجود کف در سطح مذاب به عنوان یک .....

 

درادامه........



ادامه مطلب
تاريخ : پنجشنبه بیست و هشتم آذر 1392 | 10:24 | نویسنده : علیرضا حسینی

بهینه سازی مصرف انرژی در کوره های ذوب شیشه

 

1-12 شاخص های مصرف انرژی در شیشه

 

        ذوب شیشه فرآیندی انرژی بر است. به منظور ارزیابی میزان مصرف انرژی در یک کشور و یا در یک واحد صنعتی و مقایسه آن با استانداردهای متعارف، بایستی شاخص مناسبی تعیین شود. شاخص مناسب برای مقایسه مصارف انرژی در مقاطع مختلف زمانی، شدت مصرف آن است.

 

       عبارت شدت انرژی به میزان مصرف انرژی به ازاء واحد تولید اطلاق می گردد. در واحدهای شیشه سازی، انرژی مصرف شده برای تولید یک کیلو گرم شیشه را می توان ملاک قرار داد. یعنی انرژی مصرف شده ( اعم از گاز طبیعی، مازوت، گازوئیل و برق) برای تولید یک کیلوگرم شیشه به عنوان شدت انرژی در هر واحد تولیدی تلقی می شود. با محاسبه شدت انرژی در هر واحد شیشه سازی می توان به چگونگی بهروری انرژی در آن واحد پی برد.

 

        در کشور های پیشرفته صنعتی در چند دهه اخیر تلاش های بسیاری برای کاهش میزان مصرف انرژی در صنایع شیشه صورت گرفته و نتایج ارزنده ای حاصل گردیده است. در این کشورها در حال حاضر شدت انرژی برای تولید یک کیلوگرم شیشه بین 5 تا 10 مگاژول می باشد که عمدتا به صورت گاز طبیعی، سوخت های فسیلی و برق مورد استفاده قرار می گیرد.

 

        شدت انرژی برای تولید شیشه به عوامل زیادی بستگی دارد که از جمله مهمترین آنها می توان به سیستم بازیابی حرارتی و شرایط عملیاتی کوره، ظرفیت کوره، فرمولاسیون شیشه، میزان اتلاف انرژی از کوره و برخی عوامل دیگر اشاره نمود.

 

        در کشور ما گزارشات مربوط به محاسبات و شدت انرژی و تهیه اطلاعات آماری دقیق از آن در واحدهای صنعتی چندان معمول نبوده و به اندازه لازم مورد توجه قرار نگرفته است.

 

        معهذا بررسی های داخلی و مقدماتی که در برخی واحدهای شیشه سازی بویژه واحدهای با تکنولوژی قدیمی صورت گرفته، نشان می دهد که میزان مصرف انرژی در چنین واحدهایی گاه تا 2 الی 5/2 برابر شدت انرژی برای تولید همان محصول در کشورهای پیشرفته صنعتی است.

 

       علاوه بر دلایل تکنولوژیک، یکی دیگر از دلایل بسیار مهم بالا بودن میزان مصرف انرژی در واحدهای شیشه سازی قدیمی، بازده پائین تولید محصول و همچنین پایین بودن بازده ذوب کوره ها در بسیاری از موارد است. در این زمینه درقسمت های بعدی، توضیحات بیشتری ارائه خواهد گردید.

 

        

 

 

 

 

 

       جدول زیر میزان مصرف انرژی برای ذوب یک کیلوگرم انواع شیشه را در کشورهای اروپای غربی در سال 1997 نشان می دهد. میزان مصرف انرژی برای ذوب یک کیلوگرم شیشه معمولا 55 تا 60 درصد از کل انرژی مصرفی برای تولید یک کیلوگرم از همان محصول را شامل می شود. این رقم در صنایع شیشه با تکنولوژی قدیمی تا حدودی بیشتر است.

 

 

 

نوع شیشه

شدت انرژی بر حسب مگاژول برای ذوب یک کیلوگرم شیشه

شیشه بسته بندی (بطری)

5 – 5/3

شیشه فلوت

7 – 6

شیشه تلویزیون

8

شیشه نوع E ( الیاف )

8 – 7

صنایع دستی – ظروف سرمیز

20 - 9

 

 

 

2 12  بهینه سازی مصرف انرژی در صنعت شیشه

 

        فرآیند تولید شیشه از مراحل مختلفی تشکیل می شود. ابتدا با آماده سازی مواد اولیه برای ذوب مواجه هستیم. تجهیزات این قسمت عمدتا مکانیکی است و در آنها از انرژی الکتریکی استفاده می شود. در مرحله ذوب تجهیزات مکانیکی به طور محدود مورد استفاده قرار می گیرند، بنابراین عوامل تعیین کننده فرایند عمدتا ترمودینامیکی بوده و در این قسمت انواع سوخت های فسیلی مورد استفاده قرار می گیرند.

 

 

        در مرحله شکل دهی هر دو عامل مکانیکی و ترمودینامیکی موثر می باشند و در این بخش انرژی الکتریکی و     سوخت های فسیلی به طور مساوی مصرف می شوند.

 

 

        همانگونه که اشاره شد حدود دو سوم انرژی مصرفی در فرایند تولید یک کیلوگرم محصول شیشه ای، در مرحله ذوب و آماده سازی مذاب مورد استفاده قرار می گیرد، در نتیجه در واحدهای شیشه سازی مدیریت انرژی در بخش ذوب و کوره ها از اهمیت زیادی برخوردار است.



تاريخ : پنجشنبه چهاردهم آذر 1392 | 10:58 | نویسنده : علیرضا حسینی

image004.jpg



تاريخ : سه شنبه بیست و هشتم آبان 1392 | 20:45 | نویسنده : علیرضا حسینی

ریجنراتور:

کار ریجنراتور عبارت است از پیش گرم نمودن هوای ثانویه برای فرایند احتراق با استفاده از گرمای موجود در گاز های حاصل از احتراق جهت دسترسی به درجه حرارت بالا برای شعله.

گرم نمودن هوای احتراق نیاز به مقدار زیادی انرژی دارد.درجه حرارت گاز های خروجی از کوره حدوداC ً°  1550است،از قرن19 تاکنون شیشه سازان میل سرشاری به صرفه جویی انرژی داشته اند که در گاز های خروجی از کوره یافت می شود وبرای پیش گرم کردن هوای احتراق بسیار مناسب می باشد.

به همین منظور ریجنراتورها با آجرهای داخلی خود که چکر نامیده می شوند و در دو طرف کوره به صورت یک مجموعه قرار دارند،نصب شده اند،هوای احتراق و گازهای حاصل از احتراق از طریق این چکر ها به نوبت می گذرند .هوای احتراق بدینوسیله گرم و داغ گشته و گازهای حاصل از احتراق با گذشتن از چکر های مقابل حرارت خود را به آجرهای موجود می سپارند و تا حدود 550درجه سانتیگراد سرد میگردد بطوریکه نزدیک به 3/2 گرمای خود را به آجرهای داخل ریجنراتور منتقل می نمایند.درسیکل بعدی درست عمل عکس در کوره اتفاق میافتد.بدین شکل که درجه حرارت هوای احتراق ورودی به کوره از طریق پورت ها می تواند به حدود 1000 درجه سانتیگراد و بیشتر برسد واضح است که این امر سبب کاهش مصرف انرژی مورد نیاز برای عمل

احتراق خواهد شد و از جانبی درجه حرارت گاز های خروجی کاهش می یابد.عمل تعویض سیکل احتراق هر 20 دقیقه یکبار اتفاق می افتد

 

 

 راندمان ریجنراتورها را می توان با محاسبه نسبت انرژی بازیافتی و انرژی اضافی موجود در گازهای احتراق بدست آورد بهسازی راندمان ریجنراتورها منتهی به صرفه جویی در مصرف سوخت و یا افزایش سرعت ذوب کوره خواهد شد و به عکس کاهش این راندمان منتهی به افزایش مصرف سوخت و پایین آمدن کیفیت شیشه خواهد شد در خلال  کل عمر کوره ریجنراتورها بدلیل تعویض متناوب عبور دود و هوای سوخت همیشه در معرض مواد خورنده مانند کربنات ها و سولفات ها هستند در اکثر کوره های ریجنراتوری چه سایدپورت و چه اند پورت متلاشی شدن لایه های چکر ها باعث متوقف شدن و یا موجب هزینه های گزاف تعمیرات نیمه اساسی کوره میشوند به همین جهت در طی سالیان همیشه شاهد پدیده های جدیدی از نظر نوع ردیف چینی چکرها و تغییر نوع دیرگدازها بوده ایم در طاق و دیواره های اتاقک ریجنراتور ها در قسمت فوقانی از آجرهای فورستریت باmgo 55% و یا منیزیتی mgo98% استفاده می شود همچنین لایه های فوقانی چکر ها از آجر های منیزیتی استفاده می شود که در مقابل قلیایی ها برخواسته از سطح بچ مقاومت قابل توجهی از خود نشان داده و تجربه شده اند.البته در بعضی طراحی ها از آجرهای شبه سیلیسی نیز استفاده شده است.لعابدار شدن سطح این آجرها در اثر برخورد سرباره ها و کاهش نفوذ پذیری آنها از مزایای این آجرها می باشند.منطقه میانی چکر و دیواره ریجنراتور از آجرهای کروک-منیزیتی استفاده میشود گاهی در دیواره های این مناطق از آجرهای مولایتی نیز استفاده می شود البته بدلیل آلودگی های مربوط به کروم این نوع در مناطقی که قوانین محیط زیستی رعایت می شود کمتر مورد استفاده قرار می گیرد لایه های تحتانی عمدتاً از آجرهای شاموتی با 42 تا 45 درصد  Al2O3  استفاده می شود رایدرارچ ها نیز آجرهایی هستند که چکر ها بر روی آنها چیده می شوند از نوع لایه اخر چکر انتخاب میشوند.مسیر دود هم می تواند از آجرهای 25% آلومین باشد.

قابل ذکر است ایزولاسیون ریجنراتورها می تواند راندمانحرارتی بازیافتی را درحد قابل توجهی بالا ببرد، به همین جهت همیشه دو لایه ایزوله برای آنها در نظر گرفته می شود.از نظر سیستم آجر چینی چکرها هم ار انواع مختلفی ارائه شده که میتوان از نوع سبدی،استانداردیا قراردادی چیمنی بلوک صلیبی و...نامبرد .انهدام چکر ها موجب شده طراحان و سازندگان این نوع دیرگدازها پارامترهایی چون مقاومت آجر در مقابل حمله قلیایی ها ،دیرگدازی خوب،شوک پذیری در شوک های بسیار زیاد ،کم کردن ضخامت جهت گرماگیری بیشتر ،غیرقابل نفوذ شدن سطح چکر ها و تحمل بار در دمای بالا را در نظر گرفته و جهت بهبود این وضعیت این قسمت که نقش مهمی در عمره کوره دارد فراورده جدیدی ارائه نمایند.از نظر سیستم ریدف چینی چکرها سعی شده سیستم به صورت جعبه ای و بسته طراحی و ساخته شود تا کمتر جا به جایی قطعات دیرگداز در چکرها داشته باشیم که این روش قدم مثبتی بود.مشخصات یک نوع آجرچینی چکر ها با آنالیز از بالا تا پایین چکر ها بصورت زیر است:

 

تخلخل%

دانسیتهgr/cm3

SiO2 %

CaO%

Fe2O3 %

Al2O3 %

MgO%

17

96/2

4/0

5/1

1/0

01/0

98

17

96/2

3

6/1

2/0

1/0

95

 

تخلخل%

دانسیتهgr/cm3

SiO2%

CaO%

Fe2O3%

Al2O3%

Cr2O3%

MgO %

21

3

8/0

7/1

2/7

4/0

4/5

81

20

18/3

4/0

5/0

16

22

33

24

 

   در اخرین ردیف ها نیز آجرهای شاموتی با آنالیز 42 تا 45% Al2O3 میباشد.

سیستم صلیبی یا کرسی فرم نوع جدیدی از آجرهای چکرها هستند که علاوه بردیر گدازی بالا به صورت فیوزکست تهیه شدهاند و سطح آنها بسیار صاف می باشد تا سرباره های برخاسته از بچ هنگام عبور از حفره های چکر ها احتمال چسبیدن و جمع شدن در حفره ها را ندارند و این نقطه مثبتی در طراحی به شمار میرود. ولی احتمال کم شدن شوک پذیری زیاد است .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

خوردگی شبکه بازیافت[1]

کنترل خوردگی آجرهای شبکه بازیافت حرارتی کوره ،به دلیل آنکه این شبکه در مسیر تنفس کوره قرار داشته و گرفتگی آن می تواند مشکلات جدی برای تولید و ادامه کار کوره پیدا کند ،اهمیت ویژه ای دارد .در کوره های ذوب شیشه در ایران بیشترین نوع اشتباه در نوع آجرچینی و جنس آجرهای این ناحیه وجود داشت ،به تدریج پیروی از الگوهای قدیمی منسوخ می گردد.مهمترین عوامل خوردگی در این ناحیه عبارتند از:

1-فرابری یا گرد و خاک و بخارات حاصل از خوراک کوره که میزان آن بستگی به دانه بندب مواداولیه ،رطوبت آن،شکل تغذیه و شارژ ،زاویه مشعل ها و... دارد.عدم وجود کنترل روی این عامل مهم خوردگی،بزرگترین نقطه ضعف فعلی کوره های ذوب شیشه است.عوامل مهم در فرابری عبارتند از ذرات کلوئیدی مثل CaO,MgO,SiO2 و نیز بخارات سولفات سدیم می باشند.

2- ناخالصی های سوخت: در سوخت مایع خصوصاً مازوت مصرفی اکثر کوره ها وجود گوگرد واکسیدهای V2O5,SO2,NiO نقش مهم تخریب اتصالات و پیوندهای موجود در بدنه آجر را دارند کنترل سوخت مصرفی برای تعیین یک حد استاندارد قابل قبول برای این عوامل تخریبی اهمیت زیادی دارد .V2O5 در دمای حدود 1200درجه سانتی گراد خاصیت اسیدی زیادی داشته و میل ترکیبی زیادی با CaO وMgO و تشکیل وانادات آنها را دارد .این اکسی کاتالیزور تبدیل SO2 به SO3 نیز می باشد که SO3 نیز در دماهای بالاتر ازC °600 میل ترکیبی اش با CaO و MgO زیاد بوده و آنها را به سولفات تبدیل می کند.

البته عوامل فیزیکی مثل توزیع دما در شبکه بازیافت ، شکل ایزولاسیون و چیدن آجرها نیز پارامترهای ثانویه در تخریب آجرهای  این ناحیه هستند . هم اکنون برای از بین بردن این مشکل از روش دمیدن هوای گرم از قسمت زیرین شبکه بازیافت جهت ذوب و فروریزش سولفات های کندانس شده مابین آجرها جهت باز شدن مسیر های هوا استفاده می گردد در بعضی از شرکت ها نیز با تغییر زمان ریورسال اقدام به بازنمودن مسیر هوا که منجر به ریزش سولفات ها است میشود که این عمل باعث تغییر منحنی دمایی در داخل شبکه بازیافت شده و مواد کندانس شده ریزش مینمایندزمان ریورسال عمدتا برای هر طرف بیست دقیقه در حالت نرمال در نظر گرفته شده است که در زمان باز نمودن چکرها به 30 دقیقه برای یک طرف و 15 دقیقه برای طرف دیگر در نظر گرفته میشود بایستی در زمان تغییر زمان ریورسال بادقت تمامی قسمت ها ی ریجنراتور را زیر نظر داشت تا صدمه ای به چکرها و ریجنراتور وارد نشود این عمل عمدتا زمانی انجام میگیرد که گرفتگی در قسمت های بالای چکرها باشد در صورتی که گرفتگی پایین چکر ها باشد یا بعد از تغییر زمان ریورسال که باعث پایین امدن کری اور ها به قسمت پایینی میشود از قسمت زیرین (زیر رایدرارچها)اقدام به مشعل گذاری میگردد.در طراحی های جدید آجرچینی داخل شبکه به گونه ای انجام میگردد تا فاصله بین آجرها بیشتر شود تا امکان گرفتگی مسیر کمتر پیش آید و البته این کار منجر به پرت بیشتر حرارت میشود ولی از طرفی گرمای حاصل از دود را قبل از خروج دود از دودکش بوسیله یک بویلر جهت مصارف گوناگون جذب می نمایند.

 

 

 

 

 

 

 

 



 



تاريخ : سه شنبه بیست و هشتم آبان 1392 | 20:45 | نویسنده : علیرضا حسینی

ریجنراتور:

کار ریجنراتور عبارت است از پیش گرم نمودن هوای ثانویه برای فرایند احتراق با استفاده از گرمای موجود در گاز های حاصل از احتراق جهت دسترسی به درجه حرارت بالا برای شعله.

گرم نمودن هوای احتراق نیاز به مقدار زیادی انرژی دارد.درجه حرارت گاز های خروجی از کوره حدوداC ً°  1550است،از قرن19 تاکنون شیشه سازان میل سرشاری به صرفه جویی انرژی داشته اند که در گاز های خروجی از کوره یافت می شود وبرای پیش گرم کردن هوای احتراق بسیار مناسب می باشد.

به همین منظور ریجنراتورها با آجرهای داخلی خود که چکر نامیده می شوند و در دو طرف کوره به صورت یک مجموعه قرار دارند،نصب شده اند،هوای احتراق و گازهای حاصل از احتراق از طریق این چکر ها به نوبت می گذرند .هوای احتراق بدینوسیله گرم و داغ گشته و گازهای حاصل از احتراق با گذشتن از چکر های مقابل حرارت خود را به آجرهای موجود می سپارند و تا حدود 550درجه سانتیگراد سرد میگردد بطوریکه نزدیک به 3/2 گرمای خود را به آجرهای داخل ریجنراتور منتقل می نمایند.درسیکل بعدی درست عمل عکس در کوره اتفاق میافتد.بدین شکل که درجه حرارت هوای احتراق ورودی به کوره از طریق پورت ها می تواند به حدود 1000 درجه سانتیگراد و بیشتر برسد واضح است که این امر سبب کاهش مصرف انرژی مورد نیاز برای عمل

احتراق خواهد شد و از جانبی درجه حرارت گاز های خروجی کاهش می یابد.عمل تعویض سیکل احتراق هر 20 دقیقه یکبار اتفاق می افتد

 

 

 راندمان ریجنراتورها را می توان با محاسبه نسبت انرژی بازیافتی و انرژی اضافی موجود در گازهای احتراق بدست آورد بهسازی راندمان ریجنراتورها منتهی به صرفه جویی در مصرف سوخت و یا افزایش سرعت ذوب کوره خواهد شد و به عکس کاهش این راندمان منتهی به افزایش مصرف سوخت و پایین آمدن کیفیت شیشه خواهد شد در خلال  کل عمر کوره ریجنراتورها بدلیل تعویض متناوب عبور دود و هوای سوخت همیشه در معرض مواد خورنده مانند کربنات ها و سولفات ها هستند در اکثر کوره های ریجنراتوری چه سایدپورت و چه اند پورت متلاشی شدن لایه های چکر ها باعث متوقف شدن و یا موجب هزینه های گزاف تعمیرات نیمه اساسی کوره میشوند به همین جهت در طی سالیان همیشه شاهد پدیده های جدیدی از نظر نوع ردیف چینی چکرها و تغییر نوع دیرگدازها بوده ایم در طاق و دیواره های اتاقک ریجنراتور ها در قسمت فوقانی از آجرهای فورستریت باmgo 55% و یا منیزیتی mgo98% استفاده می شود همچنین لایه های فوقانی چکر ها از آجر های منیزیتی استفاده می شود که در مقابل قلیایی ها برخواسته از سطح بچ مقاومت قابل توجهی از خود نشان داده و تجربه شده اند.البته در بعضی طراحی ها از آجرهای شبه سیلیسی نیز استفاده شده است.لعابدار شدن سطح این آجرها در اثر برخورد سرباره ها و کاهش نفوذ پذیری آنها از مزایای این آجرها می باشند.منطقه میانی چکر و دیواره ریجنراتور از آجرهای کروک-منیزیتی استفاده میشود گاهی در دیواره های این مناطق از آجرهای مولایتی نیز استفاده می شود البته بدلیل آلودگی های مربوط به کروم این نوع در مناطقی که قوانین محیط زیستی رعایت می شود کمتر مورد استفاده قرار می گیرد لایه های تحتانی عمدتاً از آجرهای شاموتی با 42 تا 45 درصد  Al2O3  استفاده می شود رایدرارچ ها نیز آجرهایی هستند که چکر ها بر روی آنها چیده می شوند از نوع لایه اخر چکر انتخاب میشوند.مسیر دود هم می تواند از آجرهای 25% آلومین باشد.

قابل ذکر است ایزولاسیون ریجنراتورها می تواند راندمانحرارتی بازیافتی را درحد قابل توجهی بالا ببرد، به همین جهت همیشه دو لایه ایزوله برای آنها در نظر گرفته می شود.از نظر سیستم آجر چینی چکرها هم ار انواع مختلفی ارائه شده که میتوان از نوع سبدی،استانداردیا قراردادی چیمنی بلوک صلیبی و...نامبرد .انهدام چکر ها موجب شده طراحان و سازندگان این نوع دیرگدازها پارامترهایی چون مقاومت آجر در مقابل حمله قلیایی ها ،دیرگدازی خوب،شوک پذیری در شوک های بسیار زیاد ،کم کردن ضخامت جهت گرماگیری بیشتر ،غیرقابل نفوذ شدن سطح چکر ها و تحمل بار در دمای بالا را در نظر گرفته و جهت بهبود این وضعیت این قسمت که نقش مهمی در عمره کوره دارد فراورده جدیدی ارائه نمایند.از نظر سیستم ریدف چینی چکرها سعی شده سیستم به صورت جعبه ای و بسته طراحی و ساخته شود تا کمتر جا به جایی قطعات دیرگداز در چکرها داشته باشیم که این روش قدم مثبتی بود.مشخصات یک نوع آجرچینی چکر ها با آنالیز از بالا تا پایین چکر ها بصورت زیر است:

 

تخلخل%

دانسیتهgr/cm3

SiO2 %

CaO%

Fe2O3 %

Al2O3 %

MgO%

17

96/2

4/0

5/1

1/0

01/0

98

17

96/2

3

6/1

2/0

1/0

95

 

تخلخل%

دانسیتهgr/cm3

SiO2%

CaO%

Fe2O3%

Al2O3%

Cr2O3%

MgO %

21

3

8/0

7/1

2/7

4/0

4/5

81

20

18/3

4/0

5/0

16

22

33

24

 

   در اخرین ردیف ها نیز آجرهای شاموتی با آنالیز 42 تا 45% Al2O3 میباشد.

سیستم صلیبی یا کرسی فرم نوع جدیدی از آجرهای چکرها هستند که علاوه بردیر گدازی بالا به صورت فیوزکست تهیه شدهاند و سطح آنها بسیار صاف می باشد تا سرباره های برخاسته از بچ هنگام عبور از حفره های چکر ها احتمال چسبیدن و جمع شدن در حفره ها را ندارند و این نقطه مثبتی در طراحی به شمار میرود. ولی احتمال کم شدن شوک پذیری زیاد است .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

خوردگی شبکه بازیافت[1]

کنترل خوردگی آجرهای شبکه بازیافت حرارتی کوره ،به دلیل آنکه این شبکه در مسیر تنفس کوره قرار داشته و گرفتگی آن می تواند مشکلات جدی برای تولید و ادامه کار کوره پیدا کند ،اهمیت ویژه ای دارد .در کوره های ذوب شیشه در ایران بیشترین نوع اشتباه در نوع آجرچینی و جنس آجرهای این ناحیه وجود داشت ،به تدریج پیروی از الگوهای قدیمی منسوخ می گردد.مهمترین عوامل خوردگی در این ناحیه عبارتند از:

1-فرابری یا گرد و خاک و بخارات حاصل از خوراک کوره که میزان آن بستگی به دانه بندب مواداولیه ،رطوبت آن،شکل تغذیه و شارژ ،زاویه مشعل ها و... دارد.عدم وجود کنترل روی این عامل مهم خوردگی،بزرگترین نقطه ضعف فعلی کوره های ذوب شیشه است.عوامل مهم در فرابری عبارتند از ذرات کلوئیدی مثل CaO,MgO,SiO2 و نیز بخارات سولفات سدیم می باشند.

2- ناخالصی های سوخت: در سوخت مایع خصوصاً مازوت مصرفی اکثر کوره ها وجود گوگرد واکسیدهای V2O5,SO2,NiO نقش مهم تخریب اتصالات و پیوندهای موجود در بدنه آجر را دارند کنترل سوخت مصرفی برای تعیین یک حد استاندارد قابل قبول برای این عوامل تخریبی اهمیت زیادی دارد .V2O5 در دمای حدود 1200درجه سانتی گراد خاصیت اسیدی زیادی داشته و میل ترکیبی زیادی با CaO وMgO و تشکیل وانادات آنها را دارد .این اکسی کاتالیزور تبدیل SO2 به SO3 نیز می باشد که SO3 نیز در دماهای بالاتر ازC °600 میل ترکیبی اش با CaO و MgO زیاد بوده و آنها را به سولفات تبدیل می کند.

البته عوامل فیزیکی مثل توزیع دما در شبکه بازیافت ، شکل ایزولاسیون و چیدن آجرها نیز پارامترهای ثانویه در تخریب آجرهای  این ناحیه هستند . هم اکنون برای از بین بردن این مشکل از روش دمیدن هوای گرم از قسمت زیرین شبکه بازیافت جهت ذوب و فروریزش سولفات های کندانس شده مابین آجرها جهت باز شدن مسیر های هوا استفاده می گردد در بعضی از شرکت ها نیز با تغییر زمان ریورسال اقدام به بازنمودن مسیر هوا که منجر به ریزش سولفات ها است میشود که این عمل باعث تغییر منحنی دمایی در داخل شبکه بازیافت شده و مواد کندانس شده ریزش مینمایندزمان ریورسال عمدتا برای هر طرف بیست دقیقه در حالت نرمال در نظر گرفته شده است که در زمان باز نمودن چکرها به 30 دقیقه برای یک طرف و 15 دقیقه برای طرف دیگر در نظر گرفته میشود بایستی در زمان تغییر زمان ریورسال بادقت تمامی قسمت ها ی ریجنراتور را زیر نظر داشت تا صدمه ای به چکرها و ریجنراتور وارد نشود این عمل عمدتا زمانی انجام میگیرد که گرفتگی در قسمت های بالای چکرها باشد در صورتی که گرفتگی پایین چکر ها باشد یا بعد از تغییر زمان ریورسال که باعث پایین امدن کری اور ها به قسمت پایینی میشود از قسمت زیرین (زیر رایدرارچها)اقدام به مشعل گذاری میگردد.در طراحی های جدید آجرچینی داخل شبکه به گونه ای انجام میگردد تا فاصله بین آجرها بیشتر شود تا امکان گرفتگی مسیر کمتر پیش آید و البته این کار منجر به پرت بیشتر حرارت میشود ولی از طرفی گرمای حاصل از دود را قبل از خروج دود از دودکش بوسیله یک بویلر جهت مصارف گوناگون جذب می نمایند.

 

 

 

 

 

 

 

 



 



تاريخ : چهارشنبه پانزدهم آبان 1392 | 20:1 | نویسنده : علیرضا حسینی

رنج اندازه گیری ترموکوپل ها

رنج كاركرد ، C

كاليبراسيون

تيپ

ترموكوپل

کوتاه مدت

بلند مدت

1800

0 ~1600

B

WRR

پلاتين 30- پلاتين روديم 6

1600

0 ~ 1300

S

WRP

پلاتين 10- پلاتين

1300

0 ~ 1200

K

WRN

كرومل- آلومل

900

0 ~750

E

WRE

كرومل- كنستانتان

750

0 ~ 600

J

WRC

آهن- كنستانتان

400

0 ~ 350

T

WRT

مس- كنستانتان



تاريخ : چهارشنبه بیست و هفتم شهریور 1392 | 19:27 | نویسنده : علیرضا حسینی

 

 



تاريخ : دوشنبه یازدهم دی 1391 | 6:0 | نویسنده : علیرضا حسینی


تاريخ : شنبه هفدهم تیر 1391 | 12:18 | نویسنده : علیرضا حسینی
تاريخ : یکشنبه یازدهم تیر 1391 | 21:48 | نویسنده : علیرضا حسینی

Aerial View of Waste Heat Recovery Boiler


Aerial View of Waste Heat Recovery Boiler

 

Turbine House

Turbine House



برچسب‌ها: سيستم توليد برق از گازهاي حاصل از احتراق براي كوره

ادامه مطلب
تاريخ : یکشنبه دهم اردیبهشت 1391 | 14:0 | نویسنده : علیرضا حسینی

مقاله پذیرفته شده در همایش شیشه دانشگاه صنعتی شریف

چكيده

با توجه به تقاضاي جهاني رو به گسترش شيشه فلوت كه در صنايع مختلف نظير ساختمان،اتومبيل، معماري و...، پيشرفت و افزايش سطح توليد در صنعت شيشه فلوت مي تواند پاسخي به نياز بازار باشد. اما از سوي ديگر كوتاه بودن عمر مفيد كوره هاي ذوب شيشه و هزينه هاي سنگين توقف و تعميرات آن ها مانعي براي پاسخ به نياز رو به رشد بازار اين محصول مي باشد.تشديد كننده فرايند ذوب با استفاده از سوخت اكسيژني به عنوان راه حلي براي توليد كنندگان صنعت شيشه فلوت به منظور بازسازي كوره مورد بررسي و آزمايش قرار گرفته شده استتا بدين وسيله واحدهاي توليد قادربه افزايش توانايي توليدو بهبود قابل توجه كيفيت شيشه در سالهاي پاياني عمر كوره هاي خود باشند.اين مقاله به بررسي اصول روش تقويت احتراق اكسيژني،مكانيزم ذوب و نتايج كلي استفاده موفقيت آميز سوخت اكسيژني بر روي كوره هاي شيشه فلوت و آناليز اقتصادي سوخت اكسيژنيپرداخته است.

کلمات کلیدی:شیشه فلوت،مشعل اکسیژن سوز،احتراق
برچسب‌ها: بررسي تاثير افزايش سيستم احتراق كمكي اكسيژني به كو

ادامه مطلب
تاريخ : دوشنبه هفتم آذر 1390 | 13:11 | نویسنده : علیرضا حسینی

كوره ها تجهيزاتي هستند كه انرژي گرمايي ناشي از احتراق يك سوخت را به يك سيال منتقل مي نمايند .اين سيال مي تواند آب،نفت خام ،هيدروكربن هاي مختلف و يا انواع روغن ها باشد.كوره ها نيز مانند تجهيزات ديگر ،يك سير تكاملي داشته و با پيشرفت دانش مهندسي،با طراحي هاي جديد روز به روز كارايي و ايمني آنها افزوده شده است.بالا بردن هرچه بيشتر راندمان ،افزايش بيش از پيش ايمني ،ساده سازي و راهبري وقابليت استفاده از سوخت هاي مختلف در كوره ها از جمله مشغله هاي فكري مهندسين در زمينه طراحي و ساخت انواع كوره ها ميباشد.
كاربردهاي كوره ها در صنايع:كوره ها در صنايع و به خصوص صنايع نفت و صنايع شيميايي معدني نظير سيمان كاربردهاي ويژهاي دارند.از جمله موارد استفاده آنها عبارتند از:
جوش آور هاي برج تقطير:بخشي از مايع خروجي پايين بايد به حالت بخار در آمده باشند و دوباره به درون برج باز گردد.اين عمل در ريبويلر يا جوش آور برج صورت مي گردد .ريبويلر برج مي تواند يك كوره باشد تا حرارت لازم براي تبخير از طريق احتراق سوخت در كوره تامين گردد.پيش گرم كن خوراك برج هاي تقطير:در برخي از عمليات هاي تقطير نياز است كه خوراك قبل از ورود به برج گرم گردد.به عنوان مثال در پالايشگاه ها قبل از ورود نفت خام به برج تقطير آن را گرم مي نمايند.عمل گرمايش اوليه خوراك در كوره ها صورت مي گيرد.
پيش گرم كن خوراك راكتورها :در برخي از واكنش هاي شيميايي كه در راكتورها صورت مي گيرد بنا به دلايل عملياتي و نيز ماهيت واكنش لازم است كه خوراك ورودي به راكتور در ابتدا گرم گردد.پيش گرمايش خوراك راكتورها نيز مي تواند در كوره صورت بگيسرد.
گرمايش سيالات انتقال حرارت:در بسياري از مراحل يك كارخانه اعم از شيميايي يا غير شيميايي در صورتيكه نياز به انرژي گرمايي باشد به جاي استفاده مستقيم از گرماي حاصل از احتراق،ابتدا توسط كوره سيالاتي نظير آب يا روغن را گرم ميكنند و سپس انرژ گرمايي را با توزيع اين سيالات در شبكه به محل هاي مورد نظر منتقل مي نمايند.
گرمايش برش هاي سنگين نفتي:جهت جابجايي برش هاي سنگين نفتي اغلب لازم است براي سهولت اين عمل ويسكوزيته برش تا حد مشخصي كاهش يابد.براي كاهش ويسكوزيته برش هاي نفتي از گرمايش آن با استفاده از كوره بهره گرفته مي شود.
پخت كلينكر سيمان:در صنعت سيمان مواد خام جهت پخت و كلسينه شدن وارد كوره دوار مي گردند.در اثر اعمال حرارت ناشي از احتراق سوخت،عمليات پخت و توليد كلينر صورت مي گيرد.
انواع كوره:تنوع در طراحي و ساخت كوره بسيار زياد است.ساده ترين نوع كوره شامل يك محفظه احتراق است كه در آن لوله هاي حاوي سيال گرم شونده در امتداد ديواره ديواره محفظه چيده شده و حرارت از طريق تشعشع به اين لوله ها منتقل مي گردد.ليكن توجه به راندمان حرارتي ،كاربري آسان و ايمن و نيز توسعه دانش مهندسي سبب شده است تا همواره مدل هاي مختلف كوره با ظرفيت هاي مختلف و براي كاربردهاي متنوع طراحي ،ساخته و عرضه گردد.كوره ها را مي توان به كوره هاي شعله مستقيم يا تابشي ،كوره هاي جابجايي و كوره هاي با لوله هاي آتشين تقسيم بندي كرد.كوره هاي را مي توان به كوره هاي شعله مستقيم يا تابشي ،كوره هاي جابجايي و كوره هاي با لوله هاي آتشين طبقه بندي كرد.كوره هاي با شعله مستقيم در دو شكل استوانه اي و كابيني ساخته مي شوند.
كوره هاي شعله مستقيم استوانه اي:اين نوع از كوره ها در صنايعي نظير سيمان و پالايش نفت كاربرد دارد.كوره استوانه اي مورد استفاده در صنعت سيمان به نام كوره دوار معروف است.اين كوره با سرعت كم حول محور طولي خود مي چرخد.دراين كوره با استفاده از شعله مستقيم كلينكر سيمان پخت مي شود.لوله هاي حاوي سيال به صورت عمودي كنار ديوار كوره قرار دارند.در درون اين كوره يك يا چند مشعل قرار مي گيرد.جداره دروني كوره هاي با شعله مستقيم را با آجر هاي نسوز مي پوشانند.در كوره هايي كه براي گرمايش سيال به كار مي روند علاوه بر قسمت تشعشع ،عمده انتقال حرارت به واسطه جايجايي و جريان يافتن گازهاي حاصل از احتراق در روي لوله ها صورت مي گيرد.در اين ناحيه معمولا لو له هارا به صورت افقي مي چينند.
كو ره هاي شعله مستقيم كابيتي:در اين دسته از كوره هاي شعله مستقيم ،طول محفظه از ارتفاع آن بيشتر بوده و مشعل ها در پايين در دو طرف كوره نصب مي شوند.لوله هاي حاوي سيال به صورت افقي در كنار ديواره محفظه چيده مي شوند.
كوره ها ي لوله آتشين:در كوره هاي لوله آتشين بر خلاف كوره هاي قبلي كه سيال داخل لوله و شعله و گاز هاي احتراق داخل پوسته بودند،سيال تحت گرمايش در درون پوسته جريان داشته و گاز هاي حاصل از احتراق در درون لوله جريان دارد.



تاريخ : شنبه بیست و هشتم آبان 1390 | 16:57 | نویسنده : علیرضا حسینی
New enrgyانرژی های نو-با پوشش های جدید بر روی شیشه-شیشه های نوین در صنعت شیشه فلوت 
Heliostat-GlassTech production line
Heliostat-GlassTech production line
Daming solar energy glass cylinder curvature radius bending equipment: tempering/heat reinforcing/low stress glass equipment which produces large-size (ultra clear) glass needed for parabolic heliostat. CRB-S can bend glass of max 1700X2000mm(67inchX78inch)and also can produce glass products applicable in laminating treatment.
Heliostat-copper free silver mirror line
Heliostat-copper free silver mirror line
Daming has BOVONE copper free silver mirror production line and it can professional manufacture heliostat raw sheet products compliant with European and North American standards. Specifications max: 3660X2440MM,min:914X1220MM;thickness:1.1~10MM, annual output:15 million square meters
TCO glass production line
TCO glass production line
The company has introduced internationally advanced TCO coated glass production line, mainly includes: multi-functional AZO coated production line, single coated full automatic vertical continuous multi-layer coated production line, quality inspection system and aided water& power supply equipments. The construction scale: one TCO conductive coating glass line of 17,000 sheets per month
LOW-E glass production line
LOW-E glass production line
It owns internationally advanced single silver line, tempering LOW-E production line, which is the large complete equipment mainly with LOW-E glass coated technology. Such equipment is the high-tech product featuring low energy consumption, high efficiency, environment friendly and energy-saving. Performance: effective prevention of radiant heat transfer, E value reaching 0.15-0.03 and can prevent 65% long wave infrared solar energy in summer and 13% direct solar energy radiant heat from indoors, reflect 71% ind...


ادامه مطلب
تاريخ : سه شنبه بیست و ششم مهر 1390 | 22:53 | نویسنده : علیرضا حسینی

ECONOMICAL OPERATION OF UNDUSTRIAL GAS APPLIANCE

 

In industrial gas appliance there are heat-treated products from the metallurgy and mechanical engineering field moreover from glass and ceramic field and many others:

 

- steel products, cast stocks, engineering steel, metal sheets, wires

- products of non ferrous metals (aluminium, copper, brass)

- utilitarian and packaging glass, laboratory and flat glass…

- products for building industries (lime, cement, bricks, roofing, etc.)

- utilitarian and sanitary ceramics, artistic ceramics, tiles, fireproof materials

- oil industry products, commodities for colour production

 

Industrial appliance help in other field of production:

 

- grocery production ( bakery ovens, storage kilns, brewery, nut and coffee roasters)

- production of illuminators

- textile production ( fabric glowing)

 

 

1. Basic types of industrial appeances

 

a) engineering and metallurgy

 

001

  • heating furnace ( push furnace, walking beam furnace, pit furnace, car-type furnace, carrousel furnace)
  • furnaces for metal heat-treating
  • melting furnaces for non ferrous metallurgy (aluminium, brass copper, bronze, etc.)
  • furnaces for drying of fire sand, forms and piths
  • furnaces for steel chemical treatment (cementing, nitration)
  • protecting and controlled atmosphere developers from gaseous fuel
  • reactor preheating auxiliary ( preheating steel constructions before welding, furnace ladle preheating in foundry, preheating of smith impression die, etc.)

 

The picture shows industrial gas furnace for preheating and heat-treating of steel products

 

 

 

b) Ceramic industry

 

Keramický průmysl
  • tunnel furnaces for tile, pottery, utilitarian and sanitary ceramic burning.
  • batch furnaces for earthenware burning
  • furnaces for electrical porcelain burning (dice-insulators, plugs)
  • furnaces for fireproof material burning ( fire-clay, dinas, corundum, normal and adapting pipes)
  • furnaces for graphite products burning
  • batch furnaces for artistic ceramics burning
  • furnaces for dental material burning etc.

 

On the picture is batch furnace for utilitarian pottery burning

 

 

 

c) glass industry

 

- melting bath and pot furnaces

- cooling batch, conveyer (utilitarian glass) and roller hearth furnaces (flat glass) furnaces

- glory hole furnaces for handmade glass products

- engines for spectacle glass

- automatic for glass bricks

- device for laboratory sillicic glass production

- burners for flame cutting and burning goblet, glass and oven glassware edges

 

d) Construction industry

 

- shaft furnace for lime burning

- rotary furnace for cement production

- facility for drying of facade rendering

- Hoffman kiln (annular kiln) for brick burning etc.

 

e) Chemical industry

 

- chemical bath heating

- fluid kilns

- high pressure autoclaves

- melting barrels

- sulfonators

 

f) Grocery industry

 

- conveyer furnaces for bread baking

- extracting steam furnace

- drying kilns for cocoa beans

- storage dryers and caramel malt roasters

- nut and coffee roasters

- brewery

 

g) Bulb, vacuum and fluorescent tube production

 

- bulb automatic machine

- furnaces for fluorescent tube production

- automatic machine for vacuum tube sealing

 

h) Agriculture

 

- grain drying installation

- oven granulating

- heating for greenhouses

 

i) Textile production

 

- burners for fabric and yarn burning

- rollers burning for fabric print

 

j) Waste incineration plant

 

- furnaces for municipal waste

- furnaces for hospital waste

- high temperature furnaces for pollutant substances

 

In industry is used gas for different technological heating with open flame of gas burners aside from classical gas furnaces. Efficiency of natural gas usage is very low in these types of heating as the flame of burners radiates into the free space and there is unlimited entry of second air into the flame. Most frequent types of technological heating are:

 

 

  • 003 drying and heating of lining in foundry pots before metal casting
  • drying of foundry forms
  • heating up water and technological bath (for washing machine parts, scalding pigs in slaughter house..)
  • flame shutter of continuous furnaces with controlled atmosphere
  • railway tire heating before its dismounting
  • burning of old gas pipe insulation

 

On the picture is shown heating of foundry pouring pot with gas burner.

 

 

 

2. Gas fuel for heat process in industry

 

 

Gas fuel is mixture of flammable and non-flammable gas which evolves heat during burning with air. They are used for household heat production, for the field of services, industry and heating. There is used natural gas in the Czech republic, which is taken from in-transit pipeline and natural gas taken from Norway. Liquid hydrocarbon gas is less common heat production. Hydrocarbon (propane and butane) generates as a side product of raw oil processing. Massive part of the production goes to households, where is no possibility of natural gas usage. Other gas fuel for industrial companies such as coal mine are natural gas as product of degassing and carboniferous gas. Next gas is coke oven gas which is used in metallurgical production for technological processing in industrial furnaces. This gas generates as a side product of hard coal carbonation in coke oven plant.

 

 

3. Gas burners

 

Gas burner is a device, where chemical energy of gas fuel is turned into heat energy through combusting and then it is used as a heat source for the gas appliances.

 

a) Gas burners with compulsory air supply

 

Gas burners with compulsory air supply make a main group of gas burners and they are mostly used for technological heating in industrial furnaces. These burners usually work with low gas fuel overpressure (P1p 5 kPa) a and with air burning overpressure of P1v=1 to 6kPa. The source of air combusting is usually the centrifugal fan. Dividing burners with compulsory air supply into groups depends on the way of mixing the gas fuel with air and on the characteristics of the flame. The basic types are:

 

  • 004 parallel double flame burners
  • half turbulent burners with mid-sized flame
  • turbulent burners with short flame
  • pulse burners with high speed of combustion gas
  • radiant burners
  • radiant tubes with enclave burning

 

Most of the burners which are used for technological heating belong into the group of burners with compulsory air supply, except mid-pressure injector torches. There is typical burner with compulsory air supply shown on the picture.

 

 

b) Injector torches

 

005Mid-pressure injector torches (see the picture) are only used for industrial heating, especially for industrial furnaces heating. Mid-pressure injector torches have many advantages compare to burners with compulsory air supply:

 

 

 

Combusting air is sucked into the burner by a gas fuel injection effect so there is no need of installing the fan for combusting the air and the air pipelines. The energy saving for a fan working is generated by the same time and it makes 2% of furnace absorbed heating power.

 

Injector torches have self-regulated ability, which enables a stable combusting ratio when change of burner’s power appears.

 

 

c) Radiant arc tubes

 

006Radiant arc tubes are low-pressure gas burners with compulsory air supply, with gas-air mixture combusting in closed tube made of iron or ceramics. Venting goes out of heated space. The most widespread type is jacket radiant arc tube (see the picture) with in-built metallic recuperator, where is heated combusted air by combustion gas going out of the tube. Combusting tube of jacket radiant arc tubes are made of ceramic segments or of re-crystallized silicon carbide. Radiant arc tubes are used for heating industrial furnaces with indirect heating when steel and non ferrous metals are heat-treated in the atmospheres controlled setting, when the isn’t wanted a contact of the batch mixture and combustion gas.

 

 

 

 

d) Pulse burners

 

007Pulse burners work in high exit velocity of combusting gas from combusting tunnel vent (80 to 120m.s-1) where is homogenous medium dynamically effected. In the picture there is pulse burner with adapting pipe made of re- crystallized silicon carbide. Burners with this adapting pipe can burn mixture of natural gas and preheated air pu to 600°C in temperature of 2000 °C in combusting tunnel.

 

 

 

 

 

008

 

 

 

 

 

 

In this picture there is pulse burner with electrical ignition and ionizing control of a flame during the control test.

 

 

 

 

 

 

 

 

 

e) Recuperative burners

 

Recuperated burners are burners with recuperators for Heating up combusting air. They are placed into in-built body of burner. Heating up of combusting air by heat of combusting gas, which leaves working space of furnace is separated into numbers of small but highly effective recuperators, compare to classical recuperators, which centrally heat up for all furnace burners.

 

In the picture there is recuperated burner for heating industrial furnaces, it contains:

 

  • 009 gas body with regulating a measuring armatura
  • air body with regulating a measuring armaturas
  • recuperator
  • ejector for combusting gas exhausting
  • gas and air jet tubes
  • adapting pipe of combusting tunnel
  • burning and controlling electrodes

 

 

 

 

 

f) Regenerative burners

 

010Regenerative burners work discontinuously compare to recuperative burners which heat up combusting air continuously in constant temperature parameters. Heating and flue systems of the furnaces which are burners equipped is divided into two parts, which are placed on opposite sides of the furnace. They work alternately in the way of taking turn in heating function and combustion gas flue function (see the picture). The changeover cycles in regulated period of time, when the cycling direction of combustion gas is changed. The cycling goes into second part of the second part of regenerative burners. Combustion air cycles through firs part (system), which is heat up to high temperature (800 °C to 1000 °C) and cuts gas fuel consumption as in case of recuperation.

 

 

 

 

 

 

4. Energy savings – heat loss of industrial furnaces

 

010Gas furnaces heat loss is a part of heat supplied by combustion of gas fuel which is not effectively used in furnaces.

 

 

 

 

  • Heat loss caused by combustion gas, which are leaving working space of appliances Qk

  • Heat loss through the appliance’s walls Qs

  • Heat loss caused by its storage inside of appliances Qa

  • Heat loss caused by heat emission through the appliance’s vents Qo

 

 

 

 

 

 

 

 

012

In the picture is shown dependence of heat loss - caused by leaving combustion gas - on its temperature.

 

 

Heat loss caused by leaving combustion gas makes the biggest part of heat loss. Part on total furnace loss is much bigger than in case of other gas appliances and it reaches 70% of total amount of heat given to furnace compare to 10% - 15% in case of other gas boilers. This huge difference is caused by high temperature in furnace’s working space. High temperature is needed for technological processing (steel melting, ceramic burning, steel heating up before its shaping, etc.) and that means that leaving combustion gas has got high temperature too.

 

 

 

 

 

 

 

 

Industrial furnace efficiency

 

Power efficiency of industrial furnace is determined by formula:

 

ηQuz*100%
QD

 

Quz - amount of heat needed to reach technological qualities of heat-treated product ( kJ.h – 1, kWh)

 

QD – total amount of heat supplied by gas fuel combusting

 

 

In table 1 there are mentioned average qualities of older industrial gas furnaces, which are still being used.

 

Furnace temperature (technological process) charge temperature average efficiency

chamber (steel heating)

bogie hearth (steel annealing)

curcible melting (Al)

bogie hearth drying kiln (send forms)

1150

950

730

450

26

28

30

32

 

 

in table 2 are mentioned average qualities of efficiency of new types industrial gas furnaces with fibrous insulation. These qualities were measured under the working conditions during combusting of natural gas and combustion air which was heated up in recuperators or in regenerators.

 

Furnace temperature (technological process) charge temperature combustion air temperature average efficiency

car-type (steel annealing)

chamber (steel heating)

car-type (ceramics burning)

950

120

1380

350

600

850

35

45

58


Temperature is in °C and efficiency is in %

 

 

5. Energy saving during the heating process in industry

 

The number of working industrial furnaces has cut down under the influence of metallurgy industry inhibition which has lasted for last few years. There is only half of the original number of 1200 furnaces provided in the Czech republic. Industrial appliances users still don’t operate their industrial facilities economically. Specific heat consumption of industrial furnaces is highly over the top in the Czech republic compare to other countries. It isn’t just because of an old furnace types, which are usually in a bad condition but also the way of operating them and the bad staff qualification. Unfortunately, this condition isn’t improving even the price of energy keeps growing, which should motivate users to cut power consumption and remove and update furnaces.

 

The way of energy savings goes through cutting its heat loss:

 

- recuperation, regeneration

- using the linings and heat insulation with high thermal resistance

- equipping appliances with modern operating systems for thermal mode control

 

The next way of energy saving is operating optimal mode of appliances for each technological processing.

 

 

 

Leaving combustion gas heat usage in industrial furnaces:

 

0131 m3 of natural gas of 1200 °C temperature contains 1870 kJ approximately, which is 0,52 kW of heat. The heat which stays after the combustion gas left the working space, can be reused for heating up of combustion air which goes to the furnace burners. That cuts heat delivery to the furnace supplied only by heat from natural gas combusting. In the picture is shown the dependence of natural gas savings (according to the natural gas consumption during its combustion with cold air) on the combustion air and gas temperature when the natural gas burning is multiplied by stoichiometric basis of combustion air n=1,1.

 

 

 

 

Usage of combustion gas heat in gas furnaces is reached by installing “combustion gas – air” changer into the combustion gas outlet. The methods for heating up the combustion air:

 

 

014a) Recuperation - continual heating up of combustion air in metal or ceramic recuperators, eventually in recuperated burners.

 

In the picture there is a recuperator made of steel heatproof tubes.

 

 

 

 

 

 

 

015

In the picture on the left is shown the placing of this recuperator in the furnace.

 

 

 

 

sálavá rekuperátor

 

 

 

 

 

 

 

 

 

 

In the picture on the right is radiant burner shown. This radiant burner heats up the combustion air for a big rotary-hearth heating furnace with 9 600 kW input. The top temperature of heated air is 600 °C. The gas saving is 40% compare to operating on cold air. (see the picture). The recuperator is 6m of high and the diameter of its radiant part is 2200 mm.

 

Besides the receperators with central heating of combustion air there are recuperative burners used. Their description is shown above.

 

In the last picture shows where recuperative burners are placed in chamber furnace, where they work as fuel gas installation.

 

b) Regeneration - discontinuous heating of combustion air in ceramic regenerators, eventually in regenerative burners (see the picture). Heating and flue system of industrial furnaces, which are regenerative burners equipped is divided into two parts, which are placed on opposite sides of the furnace. They work alternately in the way of taking turn in heating function and combustion gas flue function. Combustion air is heated up to 850 °C in regenerators and regenerative burners, which produces 45% to 50% of gas savings as you cam see on the graph.

 

 

Cutting the heat loss through the appliance walls a)makes 8% to 12% of heat loss given to the industrial furnace. The possibilities of cutting this loss are very small. Only if the loss value becomes higher than above, the wall insulation improvement or changing for a new appliance is the solution. Then the heat loss is stopped by lightened lining materials fibrous insulating materials with high thermal resistance. Unfortunately the costs of a new wall insulation of older furnaces are very high and the investment recovery depends on the size of appliance and its working capacity per year. In case of brand new furnace, there are modern linings and insulation materials automatically used. The lining change in old furnaces as the recuperator or regenerator installing depends on furnace operator’s financial limits and relatively low price of natural gas.

 

Older furnaces with classical lining is wallcovering by fibrous material used. The principal of this solution is in gluing ceramic units onto modified old lining by special lute. The saving goes up to 15% in this case.

 

c) Cutting the heat loss by accumulation in the appliance

 

The accumulation heat loss generates when the furnace mass cools down when the operating is finished or disturbed. This loss is massive in case of appliances with heavy linings and with short operating time (ex. gas furnaces where the heat of walls, lid and hearth vaporises without any use.) Possibilities of cutting this loss are the same as in case of wall heat loss. That means to use lightened insulation materials. These materials have got much better insulating abilities but smaller heat accumulation thanks to lower value of specific thermal capacity. Next possibility of cutting the heat loss is in organising operating mode of the appliance.

 

d) Cutting the heat loss of heat emission through the working holes

 

The heat loss of heat emission through the working holes generates when the working holes (doors, charging hole, observation window etc.) are open during the operating time, ex. when the charge is manipulated.

 

The possibility of cutting such a heat loss is to keep the operating rules.

 

 

e) a)The operating mode optimisation of the industrial appliances

 

Amount of heat loss of gas furnaces depends also on organising its mode

 

- quality of thermal mode operating

- charge structure and the way of its placing into the furnace

- level of furnace cooling between each working cycle

 

 

f) a)The quality of thermal mode operating

 

The thermal modes of furnaces with small technological meaning, without special requirements for heat treatment quality (small smith chamber furnaces for drop and free forged, crucible melting furnaces, drying kilns for foundry sand, forms and piths, glass cooling and glory hole furnace, etc) are mostly manually operated. The staff (smith, glassmakers)doesn’t usually have proper qualification and doesn’t have motivation for economical operating of the thermal mode. The most common deficiencies are:

 

- faulty fixed combustion ratio

- technological temperature overrunning

- permanent appliance operating in maximal input

- opened charged holes

- opened chimney valve when the operating cycle stops

 

The operating deficiency mentioned, which are cause by imperfect thermal mode operating, generate rises specific heat consumption of 30% and rises costs of its servicing and repair.

 

Charge structure and the way of placing it

 

This element is connected with optimal usage of working space has got major influence on specific thermal consumption of big modern furnaces which are automatically operated. It appears in engineering branches with small number of furnaces and big number of products, which are heat treated in these furnaces. For example: annealing of a big and rugged weldments in car-type furnace is specific heat consumption much bigger than if the same amount of massive casts are heat treated. In this case is specific heat consumption can be affected by appropriate charge structure and the way of its placing into wagon.

 

Furnace cooling between each working cycle

 

If there are very long breaks between working cycles (single shift) the heat loss builds up compare to operating with small breaks (multi shift or uninterrupted operating). The lining absorbs the heat. This heat loss can be treated by work organisation.

 

 

6. Controlling systems of industrial gas furnaces

 

The implementation of difficult technological processing, which are effected in industrial gas furnaces, is impossible to work without facilities which control and operate parameters, economical and save furnace functioning. Modern control systems are drawn up as programmable logical controller, which is formed in an operator and procedural section. Operator section perform communicative mediator between furnace operating and control system. The operator panel shows stages of operating, putting in and keeping of technological parameters, displaying and storage of operating and faulty reports about the furnace stage. The service staff have got the minimal effect on operating technological and economical processing. Their responsibility is only to put in the operating data ( choice of temperature curve according to the type of final product and its quality needed). The controlling systems mentioned are very expensive and they are mainly used for special technological processing of steel heat treating and other metal materials with high requirements on quality. The industrial furnaces equipped with modern control systems have positive effects mention above and secondly they cut the energy consumption of 15% to 20% comparing to manual control.

 

desatero hospodárného provozu pro úspory energií:

1. Using the heat of combustion gas to heat up combustion air ( recuperation, regeneration) – in case of gas furnaces which have output more than 500kW and the working space temperature more than 600°C, which were technically and economically analysed.

2.Using heat proof in combination with fibrous materials for the lining, which cut the heat loss through the walls of the furnace and cut the heat loss of periodic (cyclic) furnace by accumulation.

3. Equipping the furnace with appropriate measuring and regulation engineering according to input amount and technological type of the furnace to limit negative effect of operating staff (programmable logical machines, combustion rate regulation.)

4. Choosing the right gas burner types for technological processing while the drafting heating systems. Choosing the right number of burners and their output and their placing into the furnace to reach the best efficiency of charge heating. The combustion gas flow should be organised to maximally use the heat of combustion gas for a charge preheating(mostly continuous furnaces).

5. The operating gas furnaces economy depends on furnaces sucking conditions and on effective pressure regulation in working space. sucking in of derivative air into the working space boosts the heat loss through the combustion gas and thereby natural gas consumption.

6. When the charge is placed, the capacity and appropriate charge structure should be kept.

7. Periodically working furnace has to be organised in the way that the charge is putted in when the furnace is still hot. The chimney valves of gas furnace have to be closed while the working break. The manipulating outlets (the doors, etc.) open only for necessary time limit for putting in the charge. The staff has to be trained in bases of economical operating and motivate them save heat energy.

8. Gas furnace - the regular set up control of the optimal combustion ratio and the function of control ratio to keep the smallest balance of combustion air while the natural gas combustion. To equip the furnace with regulation of combustion ratio according to the temperature of combustion air.

9. To higher technical level of older appliances their modernisation has to be done. There is relatively low cost used for the improving of furnace parameters ( output, efficiency, even temperature, etc.)

10.The regular measuring for counting the balance, which can be used for calculating the appliance efficiency.

When all these principals (codes) are kept the major energy saving and high refund of the costs will satisfy your work.



ادامه مطلب
تاريخ : یکشنبه بیست و چهارم مهر 1390 | 9:0 | نویسنده : علیرضا حسینی
کاربرد شیشه در ساختمانها به منظور بهره گیری از مناظر و استفاده از نور خورشید و همچنین نماسازی صورت می گیرد. اما این مزایا همواره با یك ایراد بسیار مهم در تقابل هستند: شیشه ها منشاء عمده اتلاف انرژی گرمایش و سرمایش در ساختمان میباشند. حتی در ساختمانهای جدید حدود 20% اتلاف حرارت از شیشه ها صورت می گیرد و در طول تابستان نیز 75% گرمای جذب شده مربوط به شیشه هاست كه هزینه های تهویه مطبوع را افزایش میدهد. تحقیقات علمی و صنعتی در جهت حل معضلات فوق از سال 1960 شروع شد. امروزه توسعه فن آوری تولید پوششهای چندلایه توانسته با بكارگیری لایه های متعدد مشكلات كاربرد شیشه در ساختمان را به میزان مطلوبی رفع نموده و اثرات شگرفی در بهینه سازی مصرف انرژی داشته باشد.

پوششهای مدرن بطور متوسط از پنج لایه تشكیل شده اند و بستر كلی آنها پلیمری میباشد. این فن آوری درحقیقت برپایه عملكرد انتخابی درمورد كل گستره طیف الكترومغناطیسی و نور خورشید استوار است كه اشعه های حرارتی را مهار میكند و نور مرئی را بصورت كنترل شده عبور میدهد. لایه های مختلف با مكانیسم های مخصوص به خود خواص زیر را به شیشه میدهند:

- دفع حرارت نور خورشید تا 81% به واسطه لایه Metallized.Sputtered .
- جلوگیری از اشعه فرابنفش تا 99% بواسطه لایه حاوی گونه های شیمیایی UV Absorbers
- افزایش دفع ضربه در شیشه و جلوگیری از پخش قطعات شكسته بواسطه لایه پلیمری تقویت شده و مكانیسم های ویژه چسبیدن.
- و غیره.



اجرای فن آوری فوق برروی شیشه های رایج در كشور ممكن است،‌ برای نصب آنها نیازی به خروج شیشه از قاب نبوده و با ایجاد كمترین تغییرات در محیط كار همراه است.

خاصیت دفع حرارت قادر است ورود گرما به ساختمان را در شیشه های دوجداره و یك جداره بطور متوسط تا 60% كاهش دهد. همچنین این پوششها دارای انواع كم گسیل (low-e) نیزمیباشند كه اتلاف حرارت در زمستان را تا 29% كاهش میدهد. این دو معیار بطور مستقیم انرژی سرمایش و گرمایش در ساختمان را كاهش میدهند. در مورد پوششها معمولا“ 19 مشخصه اندازه گیری میشود كه تمام خواص حرارتی و نوری را شامل میگردند و خواص فیزیكی ومكانیكی را میتوان به این ویژگیها افزود.

اهم مشخصات بدین شرح میباشد :
1- درصد دفع حرارت خورشید. (Total Solar Energy Rejected TSER)
2- درصد عبور، انعكاس و جذب كل تابش خورشید. (Total Solar Transmittance / Reflectance/ Absorptance)
3- درصد كاهش ورود حرارت نسبت به شیشه عادی : Solar Heat Gain Reduction
4- درصد كاهش اتلاف حرارت نسبت به شیشه عادی Heat Loss Reduction
5- انواع ضرایب انتقال حرارت K Value

انتخاب پوشش مناسب در هر ساختمان تابع پارامترهای متعددی است از جمله :

نوع، رنگ، ضخامت و مساحت شیشه، جنس چارچوب پنجره، اقلیم منطقه، وضعیت ساختمان نسبت به تابش خورشید، نوع سایه ها و ... برآیند این عوامل در جداول دقیق، جواز نصب پوشش در هر مورد را تعیین می نماید. همچنین نهایتا“ بااستفاده از نرم افزارهای مناسب پیش بینی میزان صرفه جوئی در انرژی ساختمان و هزینه ها میسر میباشد.

علاوه بر بهینه سازی مصرف انرژی درساختمان مزایای دیگری نیز برقرار می باشند، به عنوان مثال جلوگیری از ورود اشعه فرابنفش تا میزان 99% باعث میشود، مضرات این تشعشع از جمله رنگ رفتگی لوازم داخل ساختمان، تخریب تدریجی مواد پلاستیكی و پارچه ای و ایجاد حساسیت و امراض و سرطانهای پوستی رفع گردد و عمر مفید تجهیزات ساختمان افزایش یابد. همچنین مكانیسم پیوند این پوششها به شیشه به گونه ایست كه درصورت شكسته شدن شیشه فرو نمی ریزد و امنیت ساكنان ساختمان را تامین می نماید. در این زمینه انواع ویژه ایمنی/ امنیتی و ضد سرقت نیز ارائه شده اند.

كلا“ این فن آوری بیش از صد نوع پوشش را شامل می شود كه به علت پیشرفت سریع فن و تكنولوژی و تازگی، تنوع و حجم اطلاعات در این زمینه اغلب مهندسان و طراحان از كارایی و میزان دقیق صرفه جویی انرژی حاصل از این محصولات آگاه نیستند. با درنظرگرفتن این مسئله و با توجه به اهمیت ارائه راهكارهای بهینه سازی مصرف انرژی در ساختمان این مقاله به عنوان نتایج قسمتی از یك پروژه تحقیقاتی در صدد معرفی دقیق این محصولات میباشد. بطور قطع بكارگیری این فن آوری در سطح ملی همگام با كشورهای پیشرفته سهم عمده ای در بهینه سازی مصرف انرژی خواهد داشت.


ادامه مطلب
تاريخ : یکشنبه بیست و دوم خرداد 1390 | 23:30 | نویسنده : علیرضا حسینی

Environment-Friendly Business @ Saint-Gobain Glass India

Saint-Gobain Glass India (SGGI) Ltd is a 100 per cent subsidiary of Compagnie de Saint-Gobain in France, the world’s largest manufacturer and marketer of various types of flat glass. The India chapter was established and has been fully operational since 1999. The SGGI World Class Manufacturing facility at Sriperumbudur, a 2000-year old temple town, 40 km from Chennai in Tamil Nadu has made an impact merely by its presence, sprawled over 175 acres of land. This plant manufactures various types of flat glass through the float glass manufacturing process. The facility houses two Float Lines, two Automotive Processing lines, a 5 million sq metre state-of-the-art Mirror Processing Line, a state-of-the-art Magnetron Coater facility and a mega Roof Water Harvesting Reservoir with a capacity of 58 million litres.

While it follows that a plant of this scale and nature will use enormous amounts of raw material, natural resources and furnace oil that will pollute the environment and deplete reserves, SGGI has always kept a close eye on these issues and championed the cause of not just socially responsible but also environment-friendly business practices. This claim was reinforced early this year upon the receipt of 2 awards from the Confederation of Indian Industries (CII) by SGGI. These were the

  • National  Award  for Water Management as an Excellent Water-Efficient Unit
  • National Award  for Innovative Case Study  for  Water Management

 

Apart from this, SGGI offers a portfolio of glass products that caters to the needs of green architecture and sustainable development. This unique portfolio includes solar control glass (an umbrella that encompasses reflective glass, and advanced high performance glass), low-e glass, self-cleaning glass and high-quality eco-friendly mirrors. Even clear float glass is free from elements that could in any way be detrimental to the environment or to human health. All these products are free from harmful substances like lead, copper and arsenic, and focus on imparting energy-efficiency.

To add to the feather in SGGI’s  green environmental initiative, the heat Energy from Glass Furnace Flue gas is utilised to generate Electricity .A  waste heat recovery Boiler is installed in the Flue gas stream to convert waste heat energy into supersaturated steam. The steam is used in Turbine to generate  useful Electrical Energy.

Aerial View of Waste Heat Recovery Boiler

Aerial View of Waste Heat Recovery Boiler

 

Turbine House

Turbine House


With great pride and joy, SGGI now officially announces that the WHRB-TG project is registered as CDM Project in UNFCCC on 21/06/2010.

Project & Registration Details

  1. The thermal energy from all waste gas coming out of the furnace of the second float line is utilized to generate steam. The steam generated is fed to a turbine, which in turn is coupled with an alternator, the rated capacity of which is 1.23 MW.
  2. The electricity generated is supplied for captive requirements, which displaces an equivalent amount of electricity from grid import, thereby helping in reduction of a considerable amount of Green House Gas (GHG) emission from the grid connected fossil fuel based power plants.
  3. The CDM allows emission-reduction projects in developing countries to earn Certified Emission Reduction (CER) credits, each equivalent to one ton of carbon dioxide. These CERs can be traded and sold, and used by industrialized countries to a meet a part of their emission reduction targets under the Kyoto Protocol.
  4. The CDM stimulates sustainable development and emission reductions, while giving industrialized countries some flexibility in meeting their emission reduction limitation targets.
  5. This project qualified for assistance through a rigorous public registration and issuance process designed to ensure real, measurable and verifiable emission reductions that are additional to what would have occurred without the project. The mechanism is overseen by the CDM Executive Board, which is answerable to the countries that have ratified the Kyoto Protocol.
  6. There are currently six projects registered as CDM projects in UNFCCC across the globe, under the methodology AMS-III Q. The SGGI project is the first that attained registration without queries (straight shot registration) by the CDM Executive Board.
  7. This is the second project which has been registered under AMS-III Q in India.
  8. This is the first project in Indian Glass Industry and among the Saint Gobain Group of Companies.


ادامه مطلب
تاريخ : شنبه بیست و یکم خرداد 1390 | 19:35 | نویسنده : علیرضا حسینی

ذوب شيشه فرايندي انرژي بر است، زيرا در دماهاي بسيار بالا (بيشتر از در كوره هاي پيوسته توليد شيشه، حجم زيادي مذاب ( 2000 100 تن ) مي بايست همواره در دماهاي بالا نگهداشته شود . با توجه به توضيحات فوق از نظر تئوريك در كوره هاي مدرن شيشه تنها 25 الي 40 درصد از كل انرژي مصرفي براي ذوب شيشه مورد نياز است و بقيه انرژي مورد استفاده به صورت هاي مختلف تلف مي شود. بازده حرارتي يك كوره ذوب شيشه عبارت است از نسبت بين انرژي جذب شده توسط بچ و مذاب شيشه به انرژي حاصل از احتراق سوخت وانرژي حاصل از تقويت الكتريكي مذاب. شدت انرژي يا انرژي مورد استفاده براي ذوب يك كيلو گرم شيشه به عوامل كلي زير بستگي دارد : - فرمولاسيون بچ و بويژه درصد قليايي هاي موجود در آن - درصد شيشه خرده - دانه بندي مواد اوليه و شكل ظاهري آن ( بچ فله يا متراكم شده ) - ميزان رطوبت بچ و شيشه خرده - دماي بچ هنگام ورود به كوره - دماي شيشه خرده هنگام ورود به كوره - عايق كاري و درز بندي قسمتهاي مختلف كوره و ريجنراتورها - حداكثر دماي كوره با توجه به كيفيت مورد انتظار در محصول - ميزان كشش روزانه كوره - نسبت هواي احتراق به سوخت و مناسب بودن آن - تنظيم شعله و موقعيت مشعل هاي كوره - دماي هواي احتراق ورودي به كوره (بازده پيش گرم كف هاي هوا ) - پيوسته يا غير پيوسته بودن فرايند ذوب - برخي عوامل طراحي كوره ( نحوه شارژ بچ به كوره، وجود حباب سازهاي هوا و..... ) 2 به همين ترتيب انرژي مورد استفاده در كوره هاي ذوب شيشه را مي توان به 4 گروه تقسيم بندي نمود : 1 انرژي انتقال يافته براي گرم نگهداشتن مذاب و ساختار كوره . 2 انرژي مصرفي براي ذوب و تصفيه شيشه 3 انرژي همراه گازهاي خروجي از كوره 4 انرژي تلف شده از سقف كف ديواره هاي كوره و منافذ آن روش هاي متداول براي بهينه سازي مصرف انرژي در كوره هاي ذوب شيشه نظير تشديد عايق كاري كوره، بهينه سازي مشعل‌‌ها و احتراق، افزايش دماي هواي احتراق از طريق بهبود طراحي و نسوز چيني ريجنراتورها و غيره در جزوات و مقالات مختلفي مورد بحث و بررسي قرار گرفته،است

مجتبي معين افشاري




تاريخ : دوشنبه پانزدهم فروردین 1390 | 16:26 | نویسنده : علیرضا حسینی

بهره وري انرژي در صنعت شيشه

 

بنگاههاي صنعت شيشه مي توانند با اجراي راهبردهاي زير، كارآيي فرآيند توليد را افزايش دهند و در صورت نياز خطوط توليد خود را اصلاح نمايند

 

راهبرد هاي بهره وري انرژي

1. به حداقل رساندن زمان ماندن مذاب در كوره.

2. عايق بندي ديواره و يكنواخت كردن درجه حرارت درون لهر.

3. آب بندي اطراف مشعل هاي كوره ذوب.

4. نصب سيستم كنترل زماني مصرف انرژي در سيكل خرده شيشه كوره.

5. جايگزيني كوره افقي به جاي كوره عمودي در بخش سكوريت.

6. اصلاح چكر(نحوه استقرار و نوع آجرهاي ريجنراتور).

7. كاهش مصرف انرژي در قيف خرده شيشه كوره.

8. پيش گرمايش مواد اوليه و شيشه هاي بازيافتي با استفاده از گازهاي خروجي كوره .

9. استفاده از ضايعات پلاستيكي براي تأمين بخشي از انرژي فسيلي.

10. تنظيم ميزان سوخت و هوا در مشعل كوره ها.

11. كنترل دماي كوره با استفاده از نصب كنترلرهاي ديجيتالي در كوره.

12. استفاده كامل از ظرفيت كوره ذوب.

13. بازيافت حرارت گازهاي داغ خروجي از دودكش كوره ذوب به منظور تهيه آبگرم و پيش گرمايش هواي احتراقي.

14. اجراي برنامه منظم تعمير و نگهداري تاسيسات و تجهيزات سيستم سرمايش و گرمايش.

15. استفاده بهتر از نور طبيعي روز و روشنايي موضعي جهت روشنايي سالن هاي توليد.

16. مسدود كردن نشتي لوله هاي هواي فشرده.

17. نصب بانك هاي خازني جهت بهبود ضريب قدرت.

18. نصب سيستم كنترل توان-سرعت  و يا VSD.براي فن هاي هوا

19. بارگذاري مناسب ترانسفور ماتور.

20. استفاده از ترانسفورماتورهاي با توان بالا.

 

استفاده از فناوري ‌هاي نو

1. راه اندازي سيستم توليد تركيبي برق و گرما (CHP) به منظور تأمين برق و بخار مورد نياز.

2. توليد برق از حرارت مازاد دودكش كوره ها.

3. استفاده از موتورهاي الكتريكي با بازدهي بالا و متناسب با بار.

4. بكارگيري سيستم فيلتر الكترواستاتيكي .

 

مثال هايي از بهره وري انرژي در صنعت شيشه

- عايق كاري كف محفظه ذوب توسط آجر عايق كاري، مقدار افت حرارت در محفظه ذوب را به ميزان 43% كاهش مي دهد.

- بازيافت حرارت از گازهاي داغ خروجي كوره جهت پيش گرمايش بچ اوليه، حدود 25% صرفه جويي در مصرف انرژي كارخانه را به دنبال دارد.



تاريخ : سه شنبه چهاردهم دی 1389 | 15:47 | نویسنده : علیرضا حسینی

http://www.hotwork.ag/typo/hotwork/glass-industry/combustion-technology/firing-optimisation.html

http://www.schott.com/magazine/english/info100/si100_03_glass_melt.html

با مرور این دو سایت بهینه سازی کوره ها رو  ملاحظه بفرمایید.




ادامه مطلب
تاريخ : جمعه سوم دی 1389 | 20:1 | نویسنده : علیرضا حسینی

Waste Heat Recovery

For most Fuel-fired heating equipment, a large amount of the heat supply is wasted as exhaust or flue gases. In furnaces, air and fuel are combined and burned to generate heat which is transferred to a heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via flue or stack.

Since these gases hold significant thermal energy, this can be the greatest single heat loss in many systems. Energy efficiency can often be increased by using Waste Heat Recovery systems to capture and use some of the energy in the flue or gas stack. The excess heat that emits from industrial stacks can be reused to reduce greenhouse gas emissions.

"Energy Efficiency and Clean, Renewable Energy will mean a stronger economy, a cleaner environment and a greater independence for America."- Department of Energy

Facts

  • The United States could conceivably continue producing the same amount of energy it does not, with half the fossil fuel, by recycling the waste heat from it's factories and electric generating stations.
  • Of the 500,000 stacks in the United States, 47,500 of those stacks produce waste heat above 260 degrees Celsius (500 degrees Fahrenheit) which could produce at least 50,000 megawatts of power which is almost half the energy produced by the U.S. nuclear fleet today.
  • 69%  of U.S. greenhouse gas emissions come from heat and power production.

Methodology

ATSI will analyze your current energy utilization, and identify potential energy reduction technologies. We can perform mass and energy balances, along with sophisticated simulation modeling to confirm a cost-justification. Our recovery methods include:

  • Preheating combustion air
  • Steam generation and or water heating
  • Load pre-heating

Benefits

  • Improving heating system efficiency aids in energy consumption reduction 5% to 30%Waste Heat Recovery
  • Less heat will be wasted by lowering flue or stack gas temperature in a chimney
  • Increasing flame temperatures allows for combustion air pre-heating to heat furnaces more efficiently
  • Combustion air pre-heating heats furnaces faster resulting in faster furnace start-up time
  • Waste heat used for load pre-heating increases productivity
  • Greenhouse gas emissions reduction

Our Solutions

  • Feasibility studies
  • Engineering Services
  • Process improvments
  • Project Management
  • Construction Management

 

Industries Served

  • Steel
  • Copper
  • Aluminum
  • Nickel
  • Ceramic
  • Glass

http://www.atsi.com/about/divisions/energy_technology/waste_heat_recovery/

بازیابی حرارتی از گازهای حاصل از احتراق در کوره های شیشه-فولاد-سیمان