طبق این گزارش بازار بطری شیشه ای و جار در ایران و هند در سال ۲۰۱۵ ارزشی معادل ۱۳۴٫۵ میلیون دلار داشته است که پیش بینی می شود این رقم به ۱۸۴٫۹ میلیون دلار در سال ۲۰۲۴ برسد و این امر بدلیل رشد CAGR ( افزایش نرخ رشد متوسط) ۳٫۶ درصدی بین سال های ۲۰۱۶ و ۲۰۲۴ می باشد.
بطری شیشه ای مزایایی مثل پایداری شیمیایی، قابلیت استفاده مجدد ( بازیافت) و نفوذ ناپذیری دارد. بطری شیشه ای برای بسته بندی مواد غذایی، نوشیدنی، مواد شیمیایی و دارویی مورد استفاده قرار می گیرد و در رنگ ها، ابعاد و اشکال مختلف در دسترس می باشد. بنابراین، بطری شیشه و قوطی فلزی، وسیله بسیار مناسبی جهت بسته بندی مواد غذایی هستند. بطری شیشه ای و قوطی فلزی برای مواد غذایی مثل غذاهای محافظت شده، شیر خشک، غذای حیوانت خانگی، شیرینی و شکلات مورد استفاده قرار می گیرند. افزایش تقاضا برای غذاهای کنسرو شده و همچنین افزایش بازیافت قوطی فلزی احتمال سوق پیدا کردن بازار به این سمت را افزایش می دهد.
مزیت دیگر کنسرو فلزی، حفظ ارزش غذایی و همچنین جلوگیری از آلودگی میکروبی مواد غذایی می باشد.
بخش غذای محافظت شده مهمترین کاربرد بازار جار و بطری شیشه ای می باشد و ۵۰ درصد از سهم بازار را در سال ۲۰۱۵ به خود اختصاص می دهد و پیش بینی می شود از سال ۲۰۱۵ تا ۲۰۲۴ این بخش جزء بخش هایی از بازار بطری شیشه ایران و هند باشد که رشد سریعی خواهد داشت.
سهم هند بر حسب حجم، بیش از سهم ایران در بکارگیری قوطی های فلزی و جار و بطری شیشه ای در سال ۲۰۱۵ بوده است. گرچه افزایش محبوبیت پلاستیک و سایر مواد بسته بندی مثل کاغذ و پلی اتیلن ترفتالات (PET) به دلیل وزن کم و فضای اشغالی کمترشان به نظر می رسد مانع رشد بازار شوند،افزایش جمعیت، بهبود سبک زندگی و افزایش درآمد سبب سوق پیدا کردن مردم به سمت غذای کنسروی شده است.

تولید کنندگان عمده بازار بطری شیشه ای ایران و هند شامل شرکت های زیر می باشند :
Ardagh Group, Ball Corporation, Crown Holdings Inc., Rexam PLC, Amcor Limited, Bormioli Rocco SpA, Gerresheimer AG, Heinz-Glas GmbH, Piramal Glass Limited, Saint-Gobain S.A., Vetropack Holding AG, Wiegand-Glas GmbH, Stolzle-Oberglas GmbH., Hindustan National Glass & Industries Limited (HNGIL), HSIL, Haldyn Glass Ltd., Shishe&Gaz Glass Manufacturing Co., Hamadan Glass Company, Crystal Iran Co., Hindustan Tin Works Ltd., Kaira Can Company Limited, Iran Ghouti, Tabriz Can Industries, and Farr Co. Ltd.
برچسبها: بازار بطری شیشه ای ایران و هند
تا نیمه دوم قرن ۱۹ام، بطری شیشه توسط حرکات دست، دمیدن و نهایتا شکل دادن دهانه تولید می شد. بعد از سال ۱۸۵۰، یک فرآیند تولید نیمه اتوماتیک به وجود آمد، اما امروزه فرآیند تولید کاملا اتوماتیک جایگزین آن شده است. امروزه تمامی بطری ها و جار های شیشه ای با دو روش تولید اتوماتیک پرس و دمیدن (Press and Blow) یا دمیدن و دمیدن (Blow and Blow) تولید می شوند.
۱) روش دمیدن و دمیدن ( The Blow and Blow method)
تکه ای از شیشه مذاب شده داخل قالب هایی به نام Blank ریخته می شوند. جریان هوای فشرده به داخل قالب دمیده می شود و مواد مذاب را به انتهای قالب می فشارد تا دهانه یا قسمت انتهایی بطری یا پاچ شکل گیرد. سپس، دوباره از محل دهانه، هوای فشرده به داخل ماده مذاب شیشه دمیده می شود تا فضای داخلی بطری شکل بگیرد و ماده مذاب تا جایی باد شود که شکل قالب را به خود بگیرد. محصول بدست آمده شکل اولیه بطری یا پارچ شیشه ای می باشد، اما ضخامت دیواره آن زیاد است؛ لذا این محصول دوباره حرارات داده می شود و در قالب نهایی قرار گرفته و عمل دمیدن یا مکش روی آن صورت می گیرد تا هم شکل قلب نهایی را به بگیرد و هم دیوار آن به ضخامت قابل قبول برسد. ظروف بدست آمده جهت رفع استرس های بوجود آمده روی سطح شیشه طی فرآیند تولید به کوره پخت برده می شوند و سپس تحت شرایط کاملا کنترل شده سرد می شوند.
۱٫ ماده مذاب شیشه داخل Blank ریخته می شود.
۲٫ با عمل دمیدن، دهانه شکل می گیرد.
۳٫ هوای تحت فشار از دهانه دمیده می شود و ماده مذاب اولیه را باد می کند.
۴٫ شکل اولیه بطری تولید می شود.
۵٫ محصول در قالب نهایی قرار می گیرد.
۶٫ محصول به شکل نهایی در می آید.
۷٫ مراحل تولید به پایان می رسد.
۲) روش تولید پرس و دمیدن (The Press and Blow method)
تکه ای از مذاب شیشه ای داخل قالب اولیه ریخته می شود و یک پیستون ماده مذاب را به داخل می فشارد تا شکل قالب را به خود بگیرد. مراحل بعدی مشابه آنچه که در روش دمیدن و دمیدن Blow and Blow تشریح شد می باشد.
ماشین های I.S یا واحد مستقل (Independent Section or Individual Section)
ماشین های I.S هم اکنون تقریبا جایگزین تمام ماشین های پیشین شده اند. دقیقا مشخص نیست که نام I.S برگرفته از نام مخترعان آن Ingle و Smith می باشد یا به دلیل ویژگی اصلی آن ( واحدهای موازی مستقل با سیستم توزیع مواد مذاب موازی برای هر بخش ) این نام برای این دستگاه ها برگزیده شده است. ماشین های I.S می توانند شامل واحدهای متعددی باشند. ۱۰ و ۱۲ واحد یا حتی ۱۶ به ۲۰+ واحد، از متداول ترین ماشین های امروزی هستند.
این ماشین قادر است با روش های تولید پرس و دمیدن یا دمیدن و دمیدن و تولید دوتایی، سه تایی یا چهارتایی مواد مذاب کار کند. ماشین های مدرن متداول از این نوع، قادرند بیش از ۶۰۰ ظرف شیشه ای در دقیقه تولید کنند.
برچسبها: تولید بطری شیشه ای, بطري, توليد شيشه, روش توليد بطري
| Atomic Layer Deposition in Glass Industry |
| Atomic Layer Deposition (ALD) is a Chemical Vapor Deposition (CVD) method based on saturating surface reactions. ALD is normally done at pressure of 0.1-10 mbar (hPa, torr) and temperatures of 100-400°C . The method was originally developed in 1970´s [1] to enable manufacturing of Thin Film Electroluminescent (TFEL) Displays, which was the main application for ALD until semiconductor industry found ALD in 90’s for integrated circuit (IC) applications. Currently ALD is finding more and more new application areas in addition to traditional TFEL and IC applications. More recent applications include coatings for photovoltaic applications, optical coatings, barrier coatings on silver etc. ALD is well suitable for both large areas and large batches. Throughput of ALD in batch mode is relatively high, hundreds of square meters per day. A wide variety of materials has been deposited with ALD [2], and typical coating materials in large scale ALD production include oxides (e.g. Al2O3, TiO2, SiO2, ZnO:Al,), nitrides (e.g. TiN) and sulfides (e.g. ZnS). |
ALD
is based on self-limiting surface reactions of two different precursor
chemicals. Process is cyclic and is repeating the following four steps.
Conformality. Uniform coatings can be deposited
on complex shapes, structured surfaces, both sides of substrate and
simultaneously on a large number of substrates. Barrier and anti-corrosion coatings Glass industry is using silver coatings on glass
especially in Low-e and solar reflector applications. ALD, on the other
hand, has been used for years to protect silver from corrosion in
jewelry industry, due to pin-hole free nature of ALD films (Figure 2).
The same method can be applied to protect silver coatings on glass
also. For example solar reflectors often use silver coatings on glass,
and the silver layer needs to be protected against tarnishing caused
mainly by airborne sulfur compounds.
Figure 2. Barrier coatings for silver jewelry using Beneq TFS 500 (photo courtesy of Lapponia Jewelry, Finland) There is a demand for thinner and thinner glasses to be used in
various applications, including displays and infrared cut-off filters
(IRCF). One of the main challenges in using very thin glass is the poor
cracking resistance of glass and especially the wide variation of
cracking resistance, which can be seen as a variation of glass
substrate quality. In principle even less than 0.1 mm thick glass
substrates could be used if reasonable cracking resistance could be
achieved. Cracking of glass due to nanometer-scale Griffith-like flaws
is well known problem and its importance increases when glass thickness
is decreased. These tiny flaws are usually in the range of 10-20 nm at
the surface and they act as a starting point where larger cracks start
to develop. Traditional strengthening methods for glass require
relative thick coatings as well as high post annealing temperatures in
order to obtain desired mechanical properties without sacrificing
optical properties. In addition, in very thin glasses below 0.3 mm, a
uniform coating on both sides of the glass may be required to minimize
stress buildup and prevent distortion of the glass. Thin ALD coatings
have recently been found to increase both the mean flexural strength
and the Weibull modulus of glass, resulting in a clear improvement of
glass substrate quality [4]. Table 1 summarizes the results of 4-point
bending tests. Figure 3. ALD coating fills the nanometer scale cracks on glass surface and improves the strength of glass. Transparent Conductive Oxide (TCO) and other conductive coatings Aluminum doped zinc oxide (AZO) is expected to replace Indium Tin
Oxide (ITO) in TCO applications. The main driver is high cost of
Indium. AZO can be deposited with several different methods, including
ALD. ALD AZO uses relatively low cost precursors and the process is
easily scalable. Resistivity values below 3 · 10-3 Ohm·cm have been
reached and the values could still be further optimized. Resistivity is
mostly determined by the Zn/Al ratio in the film [6], but also the
process temperature has an effect. Also non-transparent conductive
films, such as TiN, are commonly deposited with ALD. Optical coatings are commonly made using Physical Vapor Deposition
(PVD) techniques based on evaporation and sputtering. These methods
however have certain limitations and ALD can overcome some of these
limitations. Currently ALD is already used in certain special optical
applications, including IRCF filters. ALD is commonly misunderstood to
be only suitable for very thin coatings due to its low deposition rate.
However, in addition to optical coatings, micrometer thick ALD coatings
have been used in TFEL display production for decades. Using large
batch size, throughput of ALD can easily match throughput of a typical
PVD coater (Figure 5). Variation of transmission within batch, samples taken from different corners of the batch. Further ALD enables optical coatings on complex
substrate geometries, identical coatings on both sides of substrate,
creation of new film materials and repeatable deposition of
sub-nanometer thin films. Most optical ALD coatings include Al2O3 or
SiO2 as low index material and TiO2 as high index material. Deposition
rate of optical coatings is typically 1-3µm/24h. Uniformity in large
batch is better than +/- 2% without any in situ measurement feedback.
All typical optical coatings can be deposited with ALD, including
AR-coatings, dielectric mirrors, filters etc. Figure 6. Optical coating materials with ALD. Left: TEM image of
modified TiO2-based high index material using sub-nanometer layers to
suppress the crystal growth. Examples of low index ALD materials. Summary Atomic Layer Deposition is suitable for several applications related
to glass industry, including barrier coatings, TCOs, coatings to
increase strength of thin glass etc. ALD is easily scalable and
industrially proven process. Normally ALD is a batch process operated
in vacuum. Continuous ALD is currently being developed for roll-to-roll
purposes and atmospheric pressure ALD has been reported already for
several applications [7]. Until now ALD has been seen as an academic
technique only in glass industry, but recent development in ALD
technology suggests that ALD should be seriously considered for several
applications. References [1] T. Suntola, J.Antson, U.S. Patent #4,058,430, “Method for producing compound thin film” November 15, 1977 [2] R.L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, J. Appl. Phys. 97 (2005), p. 121301
[5] M.J. Pellin et. al. Mesoporous catalytic membranes: Synthetic control of pore size and wall composition, Catal. Lett. 102 (2005) 127-130. [6] J. W. Elam et al., Properties of ZnO/Al2O3 Alloy Films Grown Using Atomic Layer Deposition Techniques, Journal of The Electrochemical Society, 150 (6) G339-G347 (2003). [7] D. H. Levy et al., Stable ZnO thin film transistors by fast open air atomic layer deposition, Appl. Phys. Lett. 92, 192101 (2008). Company: |
.: Weblog Themes By Pichak :.














